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Abstract

Chart figures usually convey the key message in a multimodal
document. Understanding charts automatically and making
charts more accessible becomes indispensable in the informa-
tion era. In this paper, we study the chart summarization prob-
lem in which the goal is to generate sentences that describe
the salient information in a chart image. To obtain training
examples, we leverage image-caption pairs in multiple scien-
tific areas. We create a dataset of single-chart images from
research papers in PubMed Central (PMC) and arXiv. Most
recent vision-and-language works focus on natural images.
Several challenges in structured images such as charts are
under-explored. One key property of charts is that the text
components (e.g., legends and axis names) carry important
information. In our proposed model, we not only use a stan-
dard visual encoder but also a text encoder to encode a chart
image. The visual and textual representations are connected
to a large pre-trained language decoder via pre-embedding
and cross-attention approaches, respectively. Experimental
results show that the proposed model is significantly better
than an image captioning baseline.

1 Introduction

Information graphics, such as line charts and bar charts, are
essential and common components of a document. Charts
are usually used for visually summarizing important infor-
mation that a document intends to convey. Moreover, as
shown in the study of |Carberry, Elzer, and Demir|(2006), in-
formation graphics in magazines and newspapers often con-
vey messages that are not repeated in the text. Therefore,
summarizing the primary message in a chart is an important
step towards understanding a multimodal document. Poten-
tial applications of chart summarization include indexing in-
formation content for a search engine, making charts acces-
sible for individuals with eyesight impairments, and simpli-
fying information dissemination of technical visual info to a
layperson.

We have seen the success of image captioning works re-
cently, which can be viewed as generating summaries for an
image. However, this research has mostly focused on natural
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images while other types of images (e.g., structured images
shown in Fig. [2)) are under-explored. On the other hand, ab-
stractive text summarization models also have been greatly
improved due to the development of neural network mod-
els. However, these models only look at the text component
in a document. In this work, we focus on the less-studied
yet important task of ‘chart summarization’, where we want
to generate a salient summary for structural charts. First, to
obtain a large quantity of summaries of chart images, we
leverage captions in scientific articles. Unlike magazines or
newspapers, in which image captions could be less descrip-
tive, captions in scientific papers tend to be more detailed
and verbose. We build a chart summarization dataset from
the papers in arXiv and PubMed Central (PMC) by assum-
ing that captions are salient summaries of chart figures. Im-
age captions in these data sources are written by the corre-
sponding paper’s authors, and hence would be more natu-
ral in the language format. Since these articles also contain
figures other than charts, we create crowdsourcing tasks to
select single-chart images and collect these charts’ detailed
types (e.g., line chart, bar chart, etc.).

Different from the traditional captioning for natural im-
ages, there are two main challenges from the language per-
spective when the target images are charts: (1) Besides vi-
sual content, charts usually also contain text (e.g., legends
and axis titles) which carries significant information of com-
ponents in charts. (2) Charts are likely to be used in some
specific domains, thus the language generation model may
suffer from rare-word issues.

To address these two challenges, we first use an opti-
cal character recognition (OCR) model to detect the text
boxes in the charts. An OCR embedding layer is proposed
to encode these extracted texts with their position informa-
tion into vectors, and these vector representations are treated
as another input to the language decoder through cross-
attention mechanism. Secondly, to endow the decoder with
domain-specific knowledge, we use a large pre-trained lan-
guage decoder instead of training it from the scratch. The
chart information is connected to this pre-trained language
decoder via two approaches: pre-embedding and cross at-
tention. We empirically find that using pre-embedding for
visual content and cross-attention for OCR representations
gives the best results.

We apply our models on our collected datasets of two sci-



entific domains. We conduct both metric-based automatic
evaluation and human-annotated qualitative evaluation. Ex-
perimental results show that our model with the integra-
tion of OCR and pre-trained language model significantly
outperforms the baseline image captioning model. We also
show the ablation studies that illustrate the effectiveness of
our proposed methods.

2 Related Work

Most work on understanding chart images involves chart
type classification. |Savva et al.| (2011) classify given chart
images into 10 chart categories using an SVM classifier with
visual bag-of-words and text-region features. With a simi-
lar model, |[Ray Choudhury and Giles| (2015) proposed a bi-
nary classifier to determine whether an image is a line chart.
Siegel et al.| (2016) experimented with CNN-based models
for classifying images they extracted from scholarly articles.
In order to identify chart figures for training our summariza-
tion model, we build a binary classifier to identify common
charts (e.g., line charts, bar charts, scatter plots, etc.).

There is a line of works on interpreting text components
in chart images (Huang and Tan||[2007; Demir, Carberry,
and McCoy||2012; |Chen, Cafarella, and Adar{|2015} |Choud-
hury, Wang, and Giles|2016; Kembhavi et al.|2016; Siegel
et al.||2016; |[Kahou et al.[2018; [Singh et al.|[2019} Hiippala
et al.[[2020; Methani et al.|2020). One of the applications
here is to recover visual encodings for purposes of indexing
and search. For example, Poco and Heer| (2017) proposed
an end-to-end text analysis pipeline that identifies text ele-
ments in a chart image, determine their bounding box, and
classifies their role in the chart (e.g., x-axis label, x-axis ti-
tle, legend title, etc). They also proposed a CNN model that
classifies the type of graphical mark (e.g., bars or lines).
We simply use a general purpose OCR tool for recogniz-
ing text in chart images and focus more on the text gen-
eration model. These better text analysis models could po-
tentially improve our model performance, which we leave
for future investigation. [Kahou et al.| (2018) introduce Fig-
ureQA, a visual reasoning corpus of question-answer pairs
over synthetic chart images. Instead of answering questions
on the synthetic charts, we aim at directly summarizing real
chart images.

There are some earlier works on chart summarization.
Elzer et al.| (2007) proposed SIGHT, a system that sum-
marizes bar charts for visually impaired users. The system
identifies one of the twelve message categories that can be
conveyed by a bar chart and produces a logical form. This
logic representation is then translated into natural language
via templates. Demir, Carberry, and McCoy| (2008) built on
top of SIGHT. The proposed system first identifies an addi-
tional set of propositions that may reflect some information
in a bar chart by rules. These propositions are then organized
and structured by a bottom-up planner. Finally, a surface re-
alizer is applied to produce natural language summaries.

Greenbacker, Carberry, and McCoy| (2011) built a corpus
of human-written English summaries of line graphs. They
selected 23 line graphs and asked annotators to summa-
rize the most important information in each graph. As this
process is difficult to be scaled up, we take the captions

of chart images in scientific papers to represent the sum-
maries instead. |Greenbacker et al.| (2011) further used this
corpus and proposed an abstractive summarization system
for line charts. The system uses a Bayesian network to clas-
sify the intents of line segment, and then rules are applied
to identify additional important informational propositions
conveyed by the line graph. The sets of intents and preposi-
tions are pre-defined from the study on the corpus. They left
the final step of generating natural language summary from
prepositions as future work. Therefore, no evaluation results
were shown.

A common challenge of these earlier works is that they
are limited to a fixed set of propositions and need to con-
vert the selected propositions to natural language. Instead of
using a pipeline with hand-crafted intents and propositions,
we propose to leverage an end-to-end neural network, which
has been shown to be powerful in generating coherent and
grammatical sentences in the context of image captioning
and abstractive text summarization.

Another thread of related works is (natural) image cap-
tioning, which tries to generate descriptions for natural im-
ages. [Vinyals et al| (2015) first illustrate the end-to-end
encoder-decoder architecture and [ Xu et al.| (2015) extends it
with attention modules. Ranzato et al.| (2016) use reinforce-
ment learning to eliminate exposure bias but requires a large
amount of data to reduce the high variance. |Anderson et al.
(2018) take object-level information to enable fine-grained
visual understanding. However, we empirically found that
the detection features for natural image do not work well
for charts (structural images). Previous vision-and-language
pre-training, e.g., VLP (Zhou et al.[2019) and OSCAR (L1
et al.|2020), use pre-trained vision-and-language model to
improve image captioning but requires a large in-domain
corpus and heavy pre-training.

3 Datasets Creation

We create our datasets based on image-caption pairs that ap-
pear in public scientific papers. Different from the figures
in magazines or newspapers where the captions could be
less descriptive, figure captions in scientific articles tend to
convey the key message of figures. The assumption here is
that captions written by the paper authors could represent the
most salient information in the figures, therefore could serve
as summaries of the corresponding figures. The overview of
our datasets creation pipeline is shown in Figure|l| We con-
sider two data sources: arXivl] and PMCP ArXiv is a free
distribution service and an open-access archive for scholarly
articles in the fields such as physics, computer science, and
mathematics. PMC is a free full-text archive of biomedical
and life sciences journal literature at the U.S. National In-
stitutes of Health’s National Library of Medicine. We take
articles in the Open Access Subset)’| These two data sources
are chosen because they both provide structural data in ad-
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3htt]os ://www.ncbi.nlm.nih.gov/pmc/tools/
openftlist/, and only use articles which have a CC BY or
CCO license so that we can release our dataset.
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Figure 1: Pipeline of datasets creation. We first sample scientific papers from arXiv and PubMed Central, and then extract
image-caption pairs by parsing the source LaTeX or XML files. Finally, crowdsourcing is applied to annotate whether an image

contains a single chart and the corresponding chart type.

dition to the PDF files. That is, we can obtain image-caption
pairs by parsing the LaTeX source files provided by arXiv or
the XML files provided by PMC. We write our own LaTeX

parser for the arXiv data, and use a public PubMed parselﬂ

for parsing XML information.

Although we can extract lots of image-caption pairs, most
of the figures in these papers are not charts. Hence, to be
able to train and evaluate the proposed chart summarization
model, we need to identify which figures are charts. In this
work, we focus on the common 5 chart types, including line,
bar, scatter, pie, and area charts (Figure |Z|) Moreover, we
further focus on the simplest case where images only contain
a single chart. Figures with multiple charts or with any non-
chart component will be considered as negative images in
this work. In the following sections, we describe how do we
obtain single chart and chart type annotations.

3.1 PubMed Central Data

For PMC data, we create a crowdsourcing task to annotate
whether a given image contains single chart. We randomly
sample 50,000 images from the papers published from 2011
to 2019. For each image, we ask annotators whether it is a
single chart figure. If the answer is yes, the annotators are
required to select a chart type from line, bar, scatter, pie,
area, or other chart. Since this task is pretty simple, we ask
two annotators to label each image in the first round. In most
cases, two annotators agree on the labels. More specifically,
the Fleiss’ kappa scores for “whether it’s a single chart”
and “chart type” tasks are 0.56 and 0.73 respectively, which
shows significant agreementﬂ

If there is a disagreement on either single chart label or
chart types, we further ask the other three annotators to per-
form a second round of annotation on these images. Finally,
majority vote is applied to resolve conflicts among all five
annotators. We note that single charts with “other” chart type
are considered negative images in our experiments.

Among 50,000 images, we obtain 7,397 positive images
(single chart), including 3681 line charts, 3088 bar charts,
478 scatter charts, 125 pie charts, and 25 area charts. The
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Figure 2: Example charts with the corresponding chart types
from the PubMed Central dataset. The dataset we build con-
tains the most common 5 chart types.

positive ratio of the charts is about 13%. This low ratio is
because most of the figures in scientific articles are non-chart
figures (e.g., model architecture diagrams). In this work, we
only use chart types in analyzing model performance. That
is, chart type information is not included explicitly in model
training.

3.2 ArXiv Data

We also build another dataset from the arXiv data. We take
papers in Computer Vision, Computation and Language,
Machine Learning, Artificial Intelligence, and Neural and
Evolutionary Computing fields from 2008 to 2020. Because
of the copyright issue, we cannot put arXiv images on a
public crowdsourcing platform. Instead, the authors went
through and annotated 2000 randomly sampled figures with
the same crowdsourcing interface that we use for annotating
PMC data. This results in 370 single chart images. Given the
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copyright issue, we only release the scripts that generate this
dataset.

4 Methodology

In this section, we introduce the proposed models and train-
ing strategies for the chart summarization task. In this chart
summarization task, the model needs to generate a sequence
of words {w;} for describing the contents in a chart x.
We start with introducing the basic captioning model. To
enhance in-image text understanding and endow external
knowledge, we incorporate an OCR encoder and a pre-
trained language decoder. Lastly, we propose a simple semi-
supervised learning and domain adaptation approach using
a chart classifier.

4.1 Base Model

Our base model is adopted from the attentive encoder-
decoder model for image captioning proposed in [Xu et al.
(2015). A ResNet-101 (He et al.[2016) visual feature extrac-
tor encodes the chart into a 7 x 7 x 2048 dimensional feature
map, where each vector in the feature map corresponds to a
grid region of the image. Feature maps are then flattened to
49 x 2048 feature sequences { f; }.

{f:i}2, = ResNet (z)
At each decoding step ¢, the LSTM (Hochreiter and Schmid-
huber|1997) language decoder outputs the hidden outputs A
and cell ¢; by reading the previous word w;_; and states
(h¢—1, ct—1). The attention module (denoted as Attj_. )
then attends to the feature sequence {f;} with the hidden
output h; as a query. The context ft and the hidden vector

h, are merged into an attentive hidden vector hy with a fully-
connected layer:

wi—1 = embedding (w;_1)
hi,ce = LSTM (i1, hi—1,ci—1)

fo = Attnp(he, {£i})
hy = tanh(Wy[fy; he] + b1)

The probability of generating the k-th token at time step ¢
is the softmax over a linear transformation of the attentive
hidden h;. The loss L, is the negative log likelihood of the
ground truth token wy:

pi(wy i) = softmaxy (Ww By + bw)
Ly = —logpi(wy)
4.2 Text Understanding

Different from natural image captioning, the summarization
of charts heavily relies on the understanding of text inside
the images. However, the ResNet visual encoder (in Sec-
tion4.T) is insensitive to the text in the images (as shown in
Singh et al.|(2019) as well) thus we need to build a pipeline
to extract the text information from the images. Specifically,
we first use the Tesseract (Smith/2007) to extract a sequence
of m texts text; with their positions pos; from the image x.

{(textj, pos;)}it, = OCR(z) (1

Since the characters in charts are usually in small font and
sometimes blurred with the chart content, the copy mech-
anism (Gu et al|2016; [See, Liu, and Manning| 2017)) that
directly brings the text into final summarization does not
provide good results. We instead use the shallow text em-
bedding layer to project the OCR text to dense vector repre-
sentations that denoises the OCR detection results. We also
encode the position of the OCR along with the text represen-
tation since the spatial information indicates the properties
of the text (e.g., in the legend, in the title, or inside the chart):

g; = EmbTEXT(textj) + Weos Dos (2)

These OCR representations are treated as another view of
the charts and the language decoder simultaneously attends
to the OCR information {g; } and visual image features { f; }.
The final hidden output h; is calculated based on the con-
catenation of the visually attended vector f, the OCR at-
tended vector g, and the hidden state h;.

f=Atty s (he, {fi}) 3)
g = Atthg(he,{g;}) “4)
hy = tanh(Waf, G, he] + b2) (5)

We next replace the original attentive hidden hy with this
OCR-enhanced hidden output h; (in Sec. in succeeding
decoding steps.

4.3 Pre-trained Language Decoder

When summarizing charts in news or scientific papers, a
faithful description of the chart contents also relies on ex-
ternal knowledge, and hence a pre-trained language decoder
might help the generation. As shown in Figure [3] we illus-
trate our model which integrates a pre-trained language de-
coder GPT-2 (Radford et al.[2019)}°| As described in the pre-
vious section, we have two image encoders (i.e., ResNet en-
coder and OCR text encoder) to process the image content
and image text respectively. The ResNet encoder maps the
features into a squared feature map (the purple vector blocks
in Figure [3)) where each vector corresponds to a part of im-
age content. We will view this feature map as a sequence
of vectors (as in Eq. [T) in the following procedures. The
OCR encoder (Eq. maps the chart into a sequence of
recognized words and their positions on the chart. The OCR
embedding layer (Eq.[2) adds the word embedding and the
position encoding into one vector for each OCR entry (the
yellow vectors in Figure[3).

In order to connect these visual and textual information
from the image to the language decoder, we adopt two ways:
appending pre-embeddings and adding cross-attention lay-
ers. The pre-embedding approach is to concatenate the se-
quence of visual vectors before the word embeddings thus
the language decoder will take this concatenation as input
(e.g., the concatenation of red blocks and blue blocks in
Figure[3). The cross-attention approach adds cross-attention

The method could also be applied to other pre-trained lan-
guage decoders such as XLNet (Yang et al.|2019), TS (Raffel et al.
2019), and BART (Lewis et al.[2020).
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Figure 3: Illustration of the proposed chart summarization model. We have two branches of image encoding: (1) the visual
branch via the ResNet and fixed-length transformer (2) the text branch via the OCR system and the OCR embedding layer.
The output of these two branches are then fused into the pre-trained language decoder by pre-embedding (concatenation) and
cross-attention layer, respectively. The grey boxes are neural networks.

layers (Vaswani et al.|2017) inside the language decoder to
fuse visual information. The cross-attention layers contain
residual short-cut connections thus the decoder still benefits
from the pre-trained weights with these additional layers.

As shown in Figure [3] we use the pre-embedding ap-
proach for the features from the visual image content (i.e.,
from the ResNet encoder) and use the cross-attention layers
for the OCR texts. The idea of this specific design is that the
generation would be led by the image content and will use
the OCR information to generate concrete words. We empir-
ically find that it is the best combination to fuse information
into the language decoder, and we show the comparison in
Section In detail, the length of the ResNet feature map is
49 and the order of the features is not aligned with the posi-
tional encoding in the pre-trained language decoder. We thus
do not directly append it before the word embedding but use
a fixed-length transformer to map it to a sequence of 10 vec-
tors (the red blocks in Figure [3} we only draw 3 vectors for
simplicity). The fixed-length transformer is built by trans-
former decoder layers (Vaswani et al.||2017) with only posi-
tional embedding (without word embedding). We use only 1
layer in our experiments.

4.4 Semi-Supervised Learning and Domain
Adaptation

Although we can extract abundant image-caption pairs, most
figures in scientific articles do not contain a chart as we dis-
cussed in Section [3] If we want to reserve enough human-
annotated examples for the metric-based evaluation purpose,
that leaves very little data for training, especially for the
arXiv domain in which we only have hundreds of single-
chart images. Therefore, we leverage semi-supervised learn-
ing techniques to take advantage of large unannotated data
and use domain adaption to transfer to other datasets. Both
of these two methods rely on a chart classifier that we will
introduce first.

Chart Classifier. The key component in getting more train-
ing examples is a classifier that can identify single-chart im-
ages. We take the ResNet (He et al.[2016) as the visual back-
bone and use a binary linear classifier after the mean-pooled
features. Instead of freezing the backbone model as in the
previous works (Xu et al.||2015)), we fine-tune the classifier

with a small learning rate, 10~*. We find that this standard
classifier reaches good results (see Appendix for details).
Semi-Supervised Learning. In the semi-supervised learn-
ing setup, we have labeled data (Section [3)) and we want to
improve the performance from the unlabeled data. The unla-
beled data contains both charts and non-chart images (e.g.,
model figures in scientific publications and natural images
in news). Including these non-chart images in training data
will introduce noise and thus lead to an increment in training
time. To provide clean data in semi-supervised learning, we
filter the unlabeled data with our chart classifier and train the
summarization model based on the filtered data. In this way,
we increase the amount of data and the coverage of topics.
Domain Adaptation. Different from semi-supervised learn-
ing, domain adaptation focuses on transferring the labeled
dataset into another domain. Naive transferring without
training on the target domain would under-fit the target dis-
tribution and we empirically show its ineffectiveness in Ap-
pendix. To solve this issue, we use a similar approach to the
semi-supervised learning that trains the proposed summa-
rization model on the dataset created by the chart classifier.
More specifically, since we have much less labeled charts in
the arXiv domain, we treat it as the target domain whereas
PMC data is the source domain. We train the chart classi-
fier on the PMC data, and apply it on the images from arXiv
papers to obtain large amount of single-chart images.

5 Results

In this section, we evaluate our proposed methods on our
collected datasets of two domains: PMC and arXiv. We start
with describing the experiment setups and show results with
both automatic metric-based evaluation and human evalua-
tion.

5.1 Experimental Setup

Data Setup. The supervised learning setup is conducted
on our annotated PMC dataset. We randomly sample 1,000
charts as the test set and split the remaining charts into train-
ing (5,819) and validation (646) sets with a ratio of 9:1.

In order to increase the number of training examples,
we apply the proposed semi-supervised learning technique
(Section [#.4). The single-chart classifier is based on the



PMC (Supervised) PMC (Semi-Supervised)
BLEU ROUGE-L METEOR CIDEr BLEU ROUGE-L METEOR CIDEr BLEU ROUGE-L METEOR CIDEr

arXiv (Domain Adaptation)

Base Model  1.66 11.35 2.77 2.76 2.09 11.05 291 4.49 3.55 14.10 3.79 8.99
+ OCR 1.97 11.77 3.09 6.00 2.53 11.95 3.50 7.98 4.78 15.88 4.68 15.88
+ GPT-2 3.19 11.66 3.68 1.57 4.47 12.46 4.32 10.30  5.89 14.32 4.92 32.34

Table 1: Results on the PubMed Central (PMC) and arXiv datasets. Supervised: training images are human-labeled single chart
images. Semi-Supervised: training images also include the positive images from the proposed chart classifier. Domain Adapta-
tion: the chart classifier trained on the PMC domain is applied on arXiv domain to obtain training data for the summarization

model. The best results are marked in bold.

ResNet-101 model and is fine-tuned on our datasets. We
use the 50,000 human-labeled images (7,465 positives) from
PMC data to build this binary classifier. After the model
converges on the training set, we calibrate the classifier to
optimize the recall with an precision over 99% on the val-
idation set. Since we have lots of images, we can afford a
lower recall for high-quality positive examples. We then use
this classifier to filter the unlabeled images in the PMC data
to augment the training set. More specifically, besides the
50,000 images we used in the crowdsourcing task, there are
137,928 remaining articles in our PMC collection from the
year of 2011 to 2019. After applying the chart classifier, we
obtain 13,637 single chart images which could serve as ad-
ditional training examples for the summarization model.
For domain adaptation, we take charts and captions from
arXiv as the target domain. As described in Section [3} we
have manually annotated 370 single-chart images in this do-
main, which are served as the test set. We use the same chart
classifier in the previous semi-supervised learning setup to
annotate 140,000 arXiv images. This results in 22,044 pos-
itive examples. We split this 22,044 examples into training
data (19,840) and validation data (2,204) with a ratio of 9:1.
Model Setup. For the base model, we use a ResNet-101
model from the Torchvision (Marcel and Rodriguez|[2010)
libraryﬂ We resize the image into 224 x 224 and the back-
bone model maps it to a 7 x 7 x 2048 vectors. We sort the
OCR-extracted texts by their confidence and only keep the
top 20 texts for post-processing. Since we want the image
position to be related to the OCR position. We do not ap-
ply random resize and cropping but directly resize the chart
into 224 x 224. For the pre-trained GPT-2 (Radford et al.
2019) model, we downloaded the small GPT-2 model from
Hugging Face’s Transformer (Wolf et al.|[2020). The GPT-
2 implementation has support of cross-attention layers as in
Vaswani et al.|(2017) and we use it to attention to the OCR
features. For the fixed-length transformer, we use 1 layer
with the same architecture as the GPT-2 model but do not
apply the causal attention mask. More implementation and
hyperparameter details can be found in Appendix.

5.2 Maetric-based Evaluation

In order to conduct efficient evaluation, we take the auto-
matic language metrics to evaluate our model. We report the
BLEU (Papineni et al.|[2002), ROUGE-L (Lin/[2004), ME-
TEOR (Banerjee and Lavie||2005), and CIDEr (Vedantam,

Thttps://pytorch.org/docs/stable/torchvision/models.html

Baseline Final Model Equally Equally Bad

Better Better Good Bad
PMC 20 70 3 7
arXiv 37 50 2 11

Table 2: Human study on the results with 100 pairwise com-
parisons.

Lawrence Zitnick, and Parikh|2015) as in previous image
captioning papers. As shown in Table [I] we compare our
proposed models (in Section [4.2] and Section with the
baseline captioning model (in Section .I) on both PMC
and arXiv datasets. The model with OCR text encoder is
strictly better than the baseline captioning model for every
metrics, which indicates that the in-chart text understand-
ing is very important for generating good summarization for
scientific charts. The integration of the pre-trained language
model (GPT-2) further enhances the performance over the
OCR encoder results. The pre-trained decoder shows more
improvement on the semi-supervised setup since the model
needs enough data to learn the weights in the fixed-length
transformer and the cross-attention modules, which bridge
the vision encoder and the language decoder.

Note that the CIDEr score of the +GPT-2 model is lower
than the +OCR model on the PMC dataset under the su-
pervised setup. We find that this is due to the size of data.
The smaller size of the PMC data makes the learned model
have a stronger bias towards the original GPT-2 generation.
Namely, although the model would generate more fluent
sentences (reflected on the high BLEU score), it is biased to-
wards the GPT-2 prior by leveraging mostly common words.
This bias is captured by the CIDEr metric’s over-weighting
protocol. However, under the semi-supervised setting, the
CIDEr score is higher with GPT-2 because of the adequate
amount of data. This also demonstrates the usefulness of the
proposed semi-supervised approach.

5.3 Human Evaluation

In order to get a faithful evaluation, we conduct a human
evaluation on 100 randomly sampled examples for PMC and
arXiv. The human evaluation is conducted by the authors and
their colleagues (4 in total) since this task requires a certain
expert knowledge. We use both base captioning model and
our final model (with OCR encoder and GPT-2 decoderﬂ

8The PMC model is with the semi-supervised setup.
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BLEU ROUGE-L METEOR CIDEr

All 4.47 12.46 4.32 10.30
Line Chart 4.44 12.70 4.28 10.18
Bar Chart 4.77 12.30 471 7.14
Scatter Chart 5.96 16.63 5.39 40.78

Table 3: Results regarding different types of charts.

to generate two summaries. Each image with the generated
summaries from the two models is annotated by all 4 annota-
tors. We randomly shuffle the order of these two summaries
and only show the A/B labels to the human annotators. The
human annotators is asked to choose one from the four op-
tions: “Both Good”, “Both Bad”, “A wins”, and “B wins”.
As shown in Table [2] our proposed model significantly out-
performs the baseline model for both datasets. Moreover, we
find that our annotators have a high agreement on which gen-
erated sentence is better since this scientific summarization
is mostly about facts and salience.

6 Analysis

In this section, we provide the fine-grained analysis to illus-
trate the effectiveness of each component in the proposed
pipeline. We first demonstrate the results for different chart
types and cross-domain evaluation in Section [6.1] In Sec-
tion we empirically show the advantage of our pre-
embedding and cross-attention combination.

6.1 Different Chart Categories

During our data collection, we also let the annotators to se-
lect the type of the chart (Figure [2). In this paper, we aim
for a general chart summarization model that does not rely
on the details of each chart type. We here analyze the per-
formance of the proposed model on each chart category
with our final model trained on PMC (Semi-Supervised).
In Table 3] we show the results of the most common three
chart types (i.e., “Line”, “Bar”, “Scatter”) that have suffi-
cient amount of data (513 for Line, 400 for Bar, and 57 for
Scatter) to support automatic metric-based evaluation. Al-
though the line charts contribute the most to the training and
test data, the BLEU score is the lowest compared to the re-
sults of bar charts and scatter charts. The reason might be
that the image features produced by convolutional neural
networks (CNN) are insensitive to the properties (e.g., trend-
ing, crossings) of the curved lines. At the same time, the
CNN could capture the local intensity of points thus show
higher results for scatter chart. According to this observa-
tion, we think that using visual encoder that are specifically
designed for understanding the curved lines in chart might
be a promising future direction.

6.2 Pre-Embeddings and Cross-Attention Layers

In Section we discuss two ways to connect the visual
information to the language decoder: the pre-embedding
approach and the additional cross-attention layers. In Ta-
ble[d] we show the results of different combinations on PMC

Pre-Embed  Cross-Att BLEU ROUGE-L METEOR CIDEr

None None 1.91 10.59 3.01 0.52
Concat None 2.88 11.92 3.79 4.78
None Concat 3.64 12.07 3.69 291
Img OCR 4.47 12.46 4.32 10.30
OCR Img 4.46 12.12 4.08 11.18
Concat Concat 3.61 12.18 3.76 2.79

Table 4: Comparison of different approaches of connecting
the image content and the language decoder.

(semi-supervised) dataset. “Img” and “OCR” indicates us-
ing the image output and OCR representations as the input to
the pre-embedding approach and the cross-attention layers.
“None” means that we do not use input and thus excludes the
parameters. “Concat” means that we concatenate the output
of image and OCR representations together and use it as the
input. We can see that the our approach (Img for Pre-Embed
and OCR for Cross-Att) is comparable to its reverse (OCR
for Pre-Embed and Img for Cross-Att) and is much better
than other alternatives.

6.3 Chart Classification Performance

In both the semi-supervised learning and domain adaption
setup, we use a classifier to identify single-chart images
from lots of automatically extracted image-caption pairs.
Since the images filtered by the classifier will be further
used as data augmentation, we take the [} score as the
main metric to balance the precision and recall. We start
with the frozen ResNet-101 (He et al.|[2016) features with
an additional linear classifier. This setup achieves 90% F}
score. After fine-tuning the backbone model on our data, the
model achieves an F} score of 94.9%. We also tried adding
other neural modules (e.g., attentive modules and detection
branches) and enhanced visual backbones but we do not ob-
server a significant result improvement on the test set.

When we use this classifier in the semi-supervised and
domain adaptation setups, we calibrate the classification
threshold to maintain a precision over 99% since we have
lots of unannotated images. Under this precision level, we
achieve a recall of 59.8% and precision of 99.2%. We kept
the same classification threshold and test it on our anno-
tated arXiv test split. The precision and recall are 93.4% and
65.7%, respectively.

7 Conclusions

In this paper, we propose datasets and models for summa-
rizing scientific charts, a specific type of structured images.
We construct datasets from PMC and arXiv by leveraging
crowdsourcing and the figure captions in the papers. To en-
able better understanding text components in charts and to
endow the model with external knowledge, we propose to
use an OCR encoder and a pre-trained language decoder on
top of a standard image captioning model. In our experi-
ments, we show the effectiveness of our models in terms of
both automatic evaluation metrics and human evaluation.
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9 Implementation Details

The supervised learning setup is conducted on our anno-
tated English PMC dataset in Sec. 3. We kept 1,000 charts
in the test set and split the the remaining charts into train-
ing(5,819)/validation(646) with a ratio of 9:1. We train our
model on the training set and tune the hyperparamters on the
validation set. The test set is only used to report results. We
train for 200 epochs on this small dataset. All our code are
written in PyTorch and all experiments converge in 4 5 hours
on 1 Titan V GPU.

For the base model, we use a ResNet-101 model from the
Torchvision (Marcel and Rodriguez/2010) library ﬂ We re-
size the image into 224 x 224 and the backbone model maps
itto a7 x 7 x 2048 vectors. We use 512 dimensions for the
LSTM and 256 dimensions for the word embedding. The at-
tentive hidden states has the same size as the hidden states
(512 dimensions). We use an Adam (Kingma and Ba/2015)
with a fixed learning rate of 10~%. The batch size is 64.

For the OCR model, we sort the ocr texts by their confi-
dence and remove the empty text. We kept the top 20 ocr
texts for post-processing. We use 512 dimensions for the
OCR feature representations (yellow blocks in Fig. 3). Since
we want the image position to be related to the OCR posi-
tion. We did not do random resize and cropping but directly
resize the chart into 224 x 224.

For the pre-trained GPT-2 (Radford et al.|2019) model,
we downloaded the small GPT-2 model (124M parameters
from Hugging Face’s Transformer (Wolf et al.|[2020)
The GPT-2 implementation has support of cross-attention
layers as in [Vaswani et al| (2017) and we use it to atten-
tion to the OCR features. For the fixed-length transformer,
we use 1 layer with the same architecture as the GPT-2
model but do not apply the causal attention mask. We use
an Adam (Kingma and Bal2015) with weight decay of 0.01
following the practice in|Devlin et al.| (2019). We do not use
weight decay for the layer normalization layer and bias. We
use a linear warmup with a peak learning rate at 10~%. The
first 5% steps are warmup steps. The batch size is 64.

“https://pytorch.org/docs/stable/torchvision/models.htm]
"%https://github.com/huggingface/transformers
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PMC arXiv
BLEU ROUGE-L METEOR CIDEr BLEU ROUGE-L METEOR CIDEr
PMC 4.47 12.46 4.32 0.06 8.19 1.93 0.63
arXiv ~ 0.22 10.11 3.25 5.89 14.32 4.92 32.34

Table 5: The transferability of our captioning model across different domains. The columns indicate the training dataset while
the rows indicate the testing dataset. The PMC training data is augmented with filtered charts (in Sec. 4.4) and the arXiv training
data is built by the chart classifier. All test data are human-annotated.

In order to increase the number of training examples, we
apply the proposed semi-supervised learning technique. The
single-chart classifier is based on the ResNet-101 model and
is fine-tuned on our datasets. We use the 50,000 human-
labeled images (7,465 positives) from PMC data to build this
classifier. The training, validation, and test sets have 5,819,
646, and 1,000 data point, respectively. The data split is the
same as the above supervised learning setup. After the model
converges on the training set, we calibrate the classifier to
optimize the recall with an precision over 99% on the val-
idation set. Since we have lots of images, we can afford a
lower recall for high-quality positive examples.

We then use this classifier to filter the unlabeled images
in the PMC data to augment the training set. More specifi-
cally, besides the 50,000 images we used in the crowdsourc-
ing task, there are 137,928 remaining articles in our PMC
collection from the year of 2011 to 2019. After applying the
chart classifier, we obtain 13,637 single chart images which
could serve as additional training examples for the summa-
rization model. The hyper-parameters of the summarization
model is the same as the ones used in the supervised setup.
For the models trained on this dataset, we use a max se-
quence of 80 and train for 100 epochs. The other hyperpa-
rameters are same as the small supervised PMC data for each
model.

For domain adaptation, we take charts and captions from
English arXiv as the target domain. As described in the
dataset section, we have manually annotated 370 single-
chart images in this domain, which are served as the test
set. We use the same chart classifier in the previous semi-
supervised learning setup to annotate 140,000 arXiv im-
ages. This results in 22,044 positive examples. We split this
22,044 examples into training data (19,840) and validation
data (2,204) with a ratio of 9:1. The summarization model is
trained on the training data, tuned on the validation data, and
finally evaluated on the manually-annotated test set. For the
models trained on this dataset, we use a max sequence of 40
since the captions in arXiv are much shorter. Since we halve
the max sequence, we train for 200 epochs thus roughly keep
the same computational resources for both datasets.

10 Details of Data Collection

The crowdsourcing task is conducted on Appe There are
2263 distinct annotators from 50 countries. Since the task
is to classify image types, it doesn’t require native English
speakers. The top 5 countries are Venezuela (53%), USA

client.appen.com

(23%), Egypt (8%), Colombia (2%), and Peru (1.4%). We
paid one cent per judgement (image). For the first round of
annotation tasks, the Fleiss’ kappa scores for “whether it’s
a single chart” and “chart type” tasks are 0.56 and 0.73 re-
spectively, which shows pretty significant agreement.

11 Additional Analysis
11.1 Cross-Domain Transferability

To illustrate the need of domain adaption led by the chart
classifier (in Sec. 4.4), we show the low cross-domain trans-
ferability of models in this section. Each row in Table[5]indi-
cates the results of our final model trained on the designated
dataset while each line in the Table indicate the evaluation
results on the test set. The model does not transfer well be-
tween different domains, probably because the different fig-
uring and captioning conventions from different communi-
ties. The different topics also introduce diverging vocabular-
ies.

12 Ethical Considerations

The technique developed in this paper would help automatic
summarize news, articles, and publications where charts are
involved in. It would also help visually impaired people to
understand the content of the charts. It would fail in cases
when the OCR detector miss the key information of the
charts and would lead to unfaithful summarization of the
chart. Since we use a pre-trained language decoder in our fi-
nal model, the generated summarization might be biased to-
wards the pre-training domain of the language decoder. Re-
grading the dataset collection, we have resolved all legal and
licenses issue for the PMC dataset before showing them to
annotators. More specifically, we only use articles with CC
BY or CCO licenses from the Open Access Subset of PMC
data. For arXiv data, we annotate a small test set by the au-
thors. We will not directly release the arXiv images given
the license constraint. Instead, we plan to release scripts that
construct the dataset we built. The users will have to down-
load arXiv packages by themselves, and then run our scripts
to extract image-caption pairs and assign the labels we an-
notated.
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