
Apache Accumulo is based on Google's BigTable design, built on the Hadoop, Zookeeper, and
Thrift projects (also from Apache), with strong support for data security built right in. Accumulo
is a scalable, sorted, distributed key/value store. It stores relational rows of data as a collection
of key/value pairs, which are sorted on their keys. Accumulo provides very fast retrieval of data
when specifying either an individual key or a small range of keys.

We use Accumulo in a number of applications at Bloomberg Vault, as a database of
communication events, as a triple store for entity relationships, and as a file store abstraction
over HDFS. Applications that leverage data in Accumulo are typically written in the Java
programming language. The Accumulo API is relatively simple to use, but is lacking a robust
query framework. Applications are limited to writing data using Accumulo’s Mutation object and
reading data via iterating over Scanner or BatchScanner objects, extracting information from the
raw key/value entries in the Accumulo table. This requires a lot of complex Java code and low-
level data management, which is often similar in structure across many applications using
Accumulo for data storage and retrieval We implemented an Accumulo connector for Presto to
address these issues and to reduce the application development time.

We recently published our Presto-Accumulo connector, and this blog covers how it can be used
to retrieve data from Accumulo using SQL. We’ll also look at some performance metrics from
the TPC-H benchmark suite, and wrap up by providing an overview of the functionality
supported by the Presto-Accumulo connector.

Presto is a distributed ANSI SQL query engine for running interactive queries over very large
data sets -- from gigabytes to petabytes. Originally built by Facebook, Presto supports a
pluggable storage layer, allowing users to implement a connector to virtually any data storage
system, big or small.

When building a connector, Presto allows users to split large data sets into pieces, called splits,
which are then scanned in parallel to answer queries. The connector code uses the split to read
a chunk of the data from the source, providing rows of data to a Presto worker. After the data is
read, Presto takes over to execute the remaining query plan -- filters, joins, groups, and sorting -
- once again in parallel.

Clerk Search - An Accumulo Application

In this example we build an application that enables looking up point-of-sale orders that were
rung up by a given clerk. This application will use the TPC-H “orders” table, for which the data
can be generated using tpch-dbgen. To create this application, we need to:

1. Create an ingestion application to
a. Create the Accumulo data tables and index tables
b. Parse a flat file containing generated TPC-H order data
c. Encode each field of each row using Accumulo’s lexicoder API, adding entries to

a Mutation
d. Create an index Mutation for mapping the clerk ID to the order ID
e. Write the Mutations to their appropriate tables

2. Create a query application to
a. Batch scan the index table for all order IDs rung up by a given clerk or clerks
b. Batch scan the data table using the order IDs from the index table and a

WholeRowIterator
c. Iterate over the row, decoding the Accumulo Value objects into Java types via

Accumulo’s lexicoder API
d. Print the resulting data

Some of the code is omitted for brevity -- and it is still so much code! The full source code for
the application can be found in the presto-accumulo-examples sub-project in the presto-
accumulo repository on GitHub.

Ingesting Data using the Accumulo APIs
Let’s break down the ingestion application section by section. We first start by creating a
ZooKeeperInstance	and Connector	to interact with Accumulo.

ZooKeeperInstance	inst	=	new	ZooKeeperInstance("default",	"localhost:2181");
Connector	conn	=	inst.getConnector("root",	"secret");

We then create our data and index tables.

conn.tableOperations().create(DATA_TABLE);
conn.tableOperations().create(INDEX_TABLE);

We’ll create a MultiTableBatchWriter	and get BatchWriter	objects for the data and index
tables.

MultiTableBatchWriter	mtbw	=	conn.createMultiTableBatchWriter(

new	BatchWriterConfig());
BatchWriter	mainWrtr	=	mtbw.getBatchWriter(DATA_TABLE);
BatchWriter	indexWrtr	=	mtbw.getBatchWriter(INDEX_TABLE);

Next, open the file to be read and begin reading lines of data. For each line of text, we split the
line using a ‘|’ field delimiter and convert the fields into their corresponding Java types.

BufferedReader	rdr	=	new	BufferedReader(new	FileReader(ORDER_FILE);
String	line;
while	((line	=	rdr.readLine())	!=	null)	{
				//	Split	the	line	into	fields
				String[]	fields	=	line.split("\\|");

				Long	orderkey	=	Long.parseLong(fields[0]);
				Long	custkey	=	Long.parseLong(fields[1]);
				String	orderstatus	=	fields[2];
				Double	totalprice	=	Double.parseDouble(fields[3]);
				Date	orderdate	=	sdformat.parse(fields[4]);
				String	orderpriority	=	fields[5];
				String	clerk	=	fields[6];
				Long	shippriority	=	Long.parseLong(fields[7]);
				String	comment	=	fields[8];

We then create a Mutation	for each field in the row of data. The encode function used will
take the given Java object, inspect the type, and then use the corresponding Accumulo
lexicoder to convert it to a byte array. This is an efficient way to store data and is the preferred
storage method for Accumulo.

				//	Create	mutation	for	the	row
				Mutation	mutation	=	new	Mutation(encode(orderkey));
				mutation.put(CF,	CUSTKEY,	encode(custkey));
				mutation.put(CF,	ORDERSTATUS,	encode(orderstatus));
				mutation.put(CF,	TOTALPRICE,	encode(totalprice));
				mutation.put(CF,	ORDERDATE,	encode(orderdate));
				mutation.put(CF,	ORDERPRIORITY,	encode(orderpriority));
				mutation.put(CF,	CLERK,	encode(clerk));
				mutation.put(CF,	SHIPPRIORITY,	encode(shippriority));
				mutation.put(CF,	COMMENT,	encode(comment));
				mainWrtr.addMutation(mutation);

Finally, we index the data by creating a new Mutation	with the row ID set to the value of the
clerk	field. We encode the orderkey	as the key’s column qualifier with an empty value. This
is then written to the index table and we loop through the remaining rows of text.

				//	Create	index	mutation	for	the	clerk
				Mutation	idxClerk	=	new	Mutation(encode(clerk));
				idxClerk.put(CF,	encode(orderkey),	EMPTY_BYTES);
				indexWrtr.addMutation(idxClerk);
}

Once all the Mutations are created, we close the file reader and our MultiTableBatchWriter.
We’ve now ingested and indexed the TPC-H orders data set.

mtbw.close();
rdr.close();

We can then build this program and use it to load data into the Accumulo data and index tables.

Searching for Data using the Accumulo APIs
Now that we have ingested our data set, we move our attention to the second application. We’ll
be creating a Java application that accepts clerk IDs via the command line. Using these clerk
IDs, we search the index table for order IDs containing clerk data, then we use another
BatchScanner	to search the main orders table for the full row. This is a common Accumulo
design pattern, often referred to as secondary indexing. By duplicating data in another table, we
can drastically reduce the runtime of a query by first querying the index table to get all row IDs
that contain a specific field value. Using these IDs, we then go to the main data table and
retrieve rows by their unique identifier.

We start as we did before, by creating a Connector	from a new ZooKeeperInstance.

ZooKeeperInstance	inst	=	new	ZooKeeperInstance("default",	"localhost:2181");
Connector	conn	=	inst.getConnector("root",	"secret");

We then move on to creating and configuring a BatchScanner	to search for data in our index
table where the row ID is equal to the search term. We scan the index table and extract the
column qualifier (which is a row ID in the orders table) and add it to a List	of Range	objects
that we will use shortly.

BatchScanner	idxScanner	=	conn.createBatchScanner(INDEX_TABLE,	

new	Authorizations(),	10);
LinkedList<Range>	searchRanges	=	new	LinkedList<Range>();

String[]	searchTerms	=	//	...	retrieved	from	the	command	line
for	(String	searchTerm	:	searchTerms)	{
				searchRanges.add(new	Range(searchTerm));
}

//	Set	the	search	ranges	for	our	scanner
idxScanner.setRanges(searchRanges);

//	A	list	to	hold	all	of	the	order	IDs
List<Range>	orderIds	=	new	ArrayList<Range>();
String	orderId;

//	Process	all	of	the	records	returned	by	the	batch	scanner
for	(Map.Entry<Key,	Value>	record	:	idxScanner)	{
				//	Get	the	order	ID	and	add	it	to	the	list	of	order	IDs
				orderIds.add(new	Range(record.getKey().getColumnQualifier()));
}

//	Close	the	batch	scanner
idxScanner.close();

Now that we have the row IDs, we create another BatchScanner	against the main data table
and set the ranges to our list of order IDs and create a bunch of local Java objects to grab the
field data. We also configure a WholeRowIterator	to simplify the scanning task. This iterator
encodes all of the key/value pairs that share the same row ID into a single entry. We can then
decode this on the client side to provide row isolation as well as simplify the iteration process.

BatchScanner	dataScanner	=	conn.createBatchScanner(DATA_TABLE,

new	Authorizations(),	10);
dataScanner.setRanges(orderIds);
dataScanner.addScanIterator(new	IteratorSetting(1,	WholeRowIterator.class));

Long	orderkey	=	null;
...	//	bunch	of	other	local	variables	to	store	the	fields

We then begin scanning data, decoding the row into a SortedMap	for us to iterate over. We
then get the column qualifier and, based on the value of the qualifier, we decode the value into
the local variable.

Text	row	=	new	Text();
Text	colQual	=	new	Text();
for	(Map.Entry<Key,	Value>	entry	:	dataScanner)	{
				//	Get	the	orderkey	from	the	row
				entry.getKey().getRow(row);
				orderkey	=	decode(Long.class,	row.getBytes(),	row.getLength());

				//	Decode	the	row	into	a	map	of	entries	and	iterate	over	these
				SortedMap<Key,	Value>	rowMap	=

WholeRowIterator.decodeRow(entry.getKey(),	entry.getValue());
				for	(Map.Entry<Key,	Value>	record	:	rowMap.entrySet())	{
								//	Get	the	column	qualifier	from	the	record's	key
								record.getKey().getColumnQualifier(colQual);

								//	Switch	on	the	column	qualifier	and	decode	the	value
								switch	(colQual.toString())	{
												case	CUSTKEY_STR:
																custkey	=	decode(Long.class,	record.getValue().get());
																break;
												case	ORDERSTATUS_STR:
																orderstatus	=	decode(String.class,	record.getValue().get());
																break;
												case	TOTALPRICE_STR:
																totalprice	=	decode(Double.class,	record.getValue().get());
																break;
												case	ORDERDATE_STR:
																orderdate	=	decode(Date.class,	record.getValue().get());
																break;
												case	ORDERPRIORITY_STR:
																orderpriority	=	decode(String.class,

record.getValue().get());
																break;
												case	CLERK_STR:
																clerk	=	decode(String.class,	record.getValue().get());
																break;
												case	SHIPPRIORITY_STR:

																shippriority	=	decode(Long.class,	record.getValue().get());
																break;
												case	COMMENT_STR:
																comment	=	decode(String.class,	record.getValue().get());
																break;
												default:
																throw	new	RuntimeException("Unknown	qualifier	"	+	colQual);
								}
				}

After we have processed the row, we format our output string and print it. Once all of the rows
have been processed, we close the data scanner. That is our data retrieval application.

				System.out.println(format("%d|%d|%s|%f|%s|%s|%s|%d|%s",	

orderkey,	custkey,	orderstatus,	totalprice,	orderdate,	
orderpriority,	clerk,	shippriority,	comment));

}

//	Close	the	batch	scanner
dataScanner.close();

After we run the ingestion program, we can run the clerk search program to retrieve records
from the orders table that were rung up by given clerks. When looking for all the orders rung up
by clerks 1 and 2, we receive 2,961 rows in 2.195 seconds.

As we can see, this approach to implementing an Accumulo query application in Java is quite
verbose. Additionally, should you want to issue another query, you need to re-write your
application. Should you want to write a complex query containing joins, grouping, ordering,
and/or additional predicates, you will need to plan significant development time to complete your
application.

With the Presto connector, querying data in Accumulo is vastly simplified, and the connector
provides a framework for advanced ad-hoc queries using ANSI SQL. We’ll now take a look at a
Presto approach to our application.

Clerk Search - A Presto Application
After installing and starting Presto, we open a connection using the Presto CLI tool and create a
table to store our data. We include a table property called index_columns	to tell the Accumulo
connector that we want to index data in the clerk	column.

$	presto	--server	localhost:8080	--catalog	accumulo	--schema	default
presto:default>	CREATE	TABLE	orders	(
																				orderkey	BIGINT,

																				custkey	BIGINT,
																				orderstatus	VARCHAR,
																				totalprice	DOUBLE,
																				orderdate	DATE,
																				orderpriority	VARCHAR,
																				clerk	VARCHAR,
																				shippriority	BIGINT,
																				comment	VARCHAR
)	WITH	(
																				index_columns	=	'clerk'
);

This command will create the orders table in Accumulo as well as the table used to store the
index. After the table has been created, we have two choices for data ingestion. We could
issue a series of INSERT statements to have the connector write the code, but this is not a high-
throughput operation. Instead, we will use the PrestoBatchWriter	that is provided with the
connector.

The PrestoBatchWriter	class is intended to be used programmatically, but can also be
executed as a command-line program to ingest delimited lines of data into Accumulo. It	is a
wrapper for the regular Accumulo BatchWriter, with the added benefit of using Presto
metadata to automatically index columns of data. Additionally, the PrestoBatchWriter	tracks
metrics about the index table to allow the connector to make decisions on whether or not to use
the index (via configurable heuristics).

We’ll compile and invoke this tool against the orders data set to ingest the data into Accumulo,
telling the tool we want to ingest orders.tbl into the default.orders table, and that it is pipe-
delimited data. This process of ingestion is really no different from our previous Java
application -- it is the querying interface that drastically changes.

$	java	-jar	target/presto-accumulo-tools-0.142-ANY.jar	batchwriter	\

-s	default	-t	orders	-d	\|	-f	orders.tbl
...	log	messages	...
28360	[main]	INFO		tools.PrestoBatchWriter:	Wrote	1500000	mutations	to	table

Now that we have data in our table, we can issue SQL statements using the Presto CLI to
interact with our data.

presto:default>	SELECT	*	FROM	orders
																WHERE	clerk	IN	('Clerk#000000001',	'Clerk#000000002');

Using practically the same process as programmed before, the connector knows the ‘clerk’
column is indexed by the metadata associated with the orders	table. The connector scans the
index column for all the order IDs processed by clerks one or two, then it queries the data table

in parallel to scan the main data table. This query executes in 1.8 seconds – 15 percent faster
than our previous Java application.

Certainly a much easier interface -- we didn’t need to deal with writing any Java code to query
the tables. Additionally, we now have a very powerful SQL interface to work with our orders
table -- but why stop there when we can quickly create the remaining TPC-H tables, ingest the
data, and then run the TPC-H benchmark test suite! In the next section, we’ll take a look at
some performance numbers running the TPC-H benchmarks.

TPC-H Benchmark
The TPC-H query set contains 22 queries, often joining multiple tables together, grouping data,
ordering data, and calculating aggregates. Of the 22 queries, Presto can execute 13 of them.
The remaining nine require functionality that Presto does not yet support.

Effect of Tablet Splits on Query Time
The purpose of this test is to see if the query time is improved as the number of Accumulo
tablets in each table increases. Here, the TPC-H benchmark suite is executed via Presto. Each
query is run three times and the numbers shown below are the average for the three runs. The
Accumulo tables were then split into two tablets, and the suite was run again. This process
continues exponentially up to 64 split points (65 tablets).

This graph displays the query runtime of each of the above mentioned queries. As the number
of Accumulo tablets increases, you can see that the execution time changes linearly as is
expected. The blue line is the baseline query with only one tablet (no splits). The orange line is
the query time with one Accumulo split, which created two tablets and cut the query time nearly
in half.

As the number of tablets is increased, the query time continues to drop, until around 17 tablets
(16 split points). However, increasing the number of tablets further, does not reduce the query
time. This is either because the Tablet Servers are saturated and unable to return data fast
enough, or the improvement in the scan time is negligible and most of the runtime is spent
planning the query, returning the results, and executing any non-TableScan nodes in the query
plan.

In short, creating tablets allows Presto workers to scan the Accumulo tables in parallel. The
connector creates one Presto split per Accumulo tablet; with only one tablet a single Presto
worker is responsible for scanning the entire table. As we split the table, the connector can
create multiple scan tasks, improving the scan time and therefore the overall query time. An
Accumulo table should always be split appropriately to improve the scan time of a Presto query
that would scan the entire table.

Effect of Secondary Indexing on Query Time
This test leverages the indexing scheme built into the Presto connector. The intention of this
test is to demonstrate how beneficial the secondary indexing can be for queries which contain
predicates that will limit the amount of data retrieved from an individual table.

The below graph plots each of the selected TPC-H queries with the secondary indexing
disabled (in blue) and enabled (in orange).

The only queries here that benefit from the secondary indexing at all are queries 6 and 12. In
query 6, 1.3% of the largest TPC-H table, lineitem, is actually scanned when the predicates are
taken into consideration. Query 12 scans 4.4% of the lineitem table. When we enable the
secondary indexing, only these small percentages of the tables are scanned.

For the remaining queries, 100% of the tables in the queries are scanned. When the secondary
index is used, each distinct row ID is packed into a Presto split, 10,000 row IDs per split, and
then sent off to a Presto worker to be pulled from Accumulo using a BatchScanner. We are
basically executing a full table scan, but requesting every single row ID instead of just scanning
the entire table using fewer Accumulo Range objects.

It is not surprising that the queries which scan 100% of the table do not derive any benefit from
the secondary indexing. Only queries which scan a small number of rows from a table can
leverage the secondary indexing. This optimization is tunable using session parameters which
can be set for each distinct query.

Conclusion
By using the Presto Connector for Apache Accumulo, users are able to execute efficient ANSI
SQL queries against relational data sets for rapid exploration and production analytics. This
drastically reduces the development time to extract data from Accumulo. The methodologies
used by the Presto Connector follow common design patterns used by Accumulo application
developers today.

Features of the Presto-Accumulo Connector
● Creating/dropping tables backed by Accumulo, including specifying locality groups and

indexed columns
● Creating/dropping views
● Inserting data using SQL
● High-throughput ingestion of data via PrestoBatchWriter
● Predicate pushdowns on row ID column and indexed columns
● External table support for existing data sets
● Store values as strings or using Accumulo’s lexicoder API
● Scan-time authorizations via a table property
● Scan-time user impersonation via a session property
● Additional session properties to enable/disable optimizations and tune the indexing

heuristics
● Pluggable metadata storage if not using Zookeeper

If you find this interesting, we’d love to hear from you – and we are hiring!

