
Apache Accumulo is based on Google's BigTable design, built on the Hadoop, Zookeeper, and 
Thrift projects (also from Apache), with strong support for data security built right in.  Accumulo 
is a scalable, sorted, distributed key/value store.  It stores relational rows of data as a collection 
of key/value pairs, which are sorted on their keys.  Accumulo provides very fast retrieval of data 
when specifying either an individual key or a small range of keys.  
 
We use Accumulo in a number of applications at Bloomberg Vault, as a database of 
communication events, as a triple store for entity relationships, and as a file store abstraction 
over HDFS. Applications that leverage data in Accumulo are typically written in the Java 
programming language. The Accumulo API is relatively simple to use, but is lacking a robust 
query framework.  Applications are limited to writing data using Accumulo’s Mutation object and 
reading data via iterating over Scanner or BatchScanner objects, extracting information from the 
raw key/value entries in the Accumulo table.  This requires a lot of complex Java code and low-
level data management, which is often similar in structure across many applications using 
Accumulo for data storage and retrieval We implemented an Accumulo connector for Presto to 
address these issues and to reduce the application development time.  
  
We recently published our Presto-Accumulo connector, and this blog covers how it can be used 
to retrieve data from Accumulo using SQL. We’ll also look at some performance metrics from 
the TPC-H benchmark suite, and wrap up by providing an overview of the functionality 
supported by the Presto-Accumulo connector.  
 
Presto is a distributed ANSI SQL query engine for running interactive queries over very large 
data sets -- from gigabytes to petabytes.  Originally built by Facebook, Presto supports a 
pluggable storage layer, allowing users to implement a connector to virtually any data storage 
system, big or small. 
 
When building a connector, Presto allows users to split large data sets into pieces, called splits, 
which are then scanned in parallel to answer queries. The connector code uses the split to read 
a chunk of the data from the source, providing rows of data to a Presto worker.  After the data is 
read, Presto takes over to execute the remaining query plan -- filters, joins, groups, and sorting -
- once again in parallel. 



 
 

Clerk Search - An Accumulo Application 
 
In this example we build an application that enables looking up point-of-sale orders that were 
rung up by a given clerk.  This application will use the TPC-H “orders” table, for which the data 
can be generated using tpch-dbgen. To create this application, we need to: 
 

1. Create an ingestion application to 
a. Create the Accumulo data tables and index tables 
b. Parse a flat file containing generated TPC-H order data 
c. Encode each field of each row using Accumulo’s lexicoder API, adding entries to 

a Mutation 
d. Create an index Mutation for mapping the clerk ID to the order ID 
e. Write the Mutations to their appropriate tables 

2. Create a query application to 
a. Batch scan the index table for all order IDs rung up by a given clerk or clerks 
b. Batch scan the data table using the order IDs from the index table and a 

WholeRowIterator 
c. Iterate over the row, decoding the Accumulo Value objects into Java types via 

Accumulo’s lexicoder API 
d. Print the resulting data 

 
Some of the code is omitted for brevity -- and it is still so much code!  The full source code for 
the application can be found in the presto-accumulo-examples sub-project in the presto-
accumulo repository on GitHub.   



Ingesting Data using the Accumulo APIs 
Let’s break down the ingestion application section by section.  We first start by creating a 
ZooKeeperInstance	and Connector	to interact with Accumulo. 
 
ZooKeeperInstance	inst	=	new	ZooKeeperInstance("default",	"localhost:2181"); 
Connector	conn	=	inst.getConnector("root",	"secret"); 
 
We then create our data and index tables. 
 
conn.tableOperations().create(DATA_TABLE); 
conn.tableOperations().create(INDEX_TABLE); 
 
We’ll create a MultiTableBatchWriter	and get BatchWriter	objects for the data and index 
tables. 
 
MultiTableBatchWriter	mtbw	=	conn.createMultiTableBatchWriter( 

new	BatchWriterConfig()); 
BatchWriter	mainWrtr	=	mtbw.getBatchWriter(DATA_TABLE); 
BatchWriter	indexWrtr	=	mtbw.getBatchWriter(INDEX_TABLE); 
 
Next, open the file to be read and begin reading lines of data.  For each line of text, we split the 
line using a ‘|’ field delimiter and convert the fields into their corresponding Java types. 
 
BufferedReader	rdr	=	new	BufferedReader(new	FileReader(ORDER_FILE); 
String	line; 
while	((line	=	rdr.readLine())	!=	null)	{ 
				//	Split	the	line	into	fields 
				String[]	fields	=	line.split("\\|"); 
 
				Long	orderkey	=	Long.parseLong(fields[0]); 
				Long	custkey	=	Long.parseLong(fields[1]); 
				String	orderstatus	=	fields[2]; 
				Double	totalprice	=	Double.parseDouble(fields[3]); 
				Date	orderdate	=	sdformat.parse(fields[4]); 
				String	orderpriority	=	fields[5]; 
				String	clerk	=	fields[6]; 
				Long	shippriority	=	Long.parseLong(fields[7]); 
				String	comment	=	fields[8]; 
 
We then create a Mutation	for each field in the row of data.  The encode function used will 
take the given Java object, inspect the type, and then use the corresponding Accumulo 
lexicoder to convert it to a byte array.  This is an efficient way to store data and is the preferred 
storage method for Accumulo. 



 
				//	Create	mutation	for	the	row 
				Mutation	mutation	=	new	Mutation(encode(orderkey)); 
				mutation.put(CF,	CUSTKEY,	encode(custkey)); 
				mutation.put(CF,	ORDERSTATUS,	encode(orderstatus)); 
				mutation.put(CF,	TOTALPRICE,	encode(totalprice)); 
				mutation.put(CF,	ORDERDATE,	encode(orderdate)); 
				mutation.put(CF,	ORDERPRIORITY,	encode(orderpriority)); 
				mutation.put(CF,	CLERK,	encode(clerk)); 
				mutation.put(CF,	SHIPPRIORITY,	encode(shippriority)); 
				mutation.put(CF,	COMMENT,	encode(comment)); 
				mainWrtr.addMutation(mutation); 
 
Finally, we index the data by creating a new Mutation	with the row ID set to the value of the 
clerk	field.  We encode the orderkey	as the key’s column qualifier with an empty value.  This 
is then written to the index table and we loop through the remaining rows of text. 
 
				//	Create	index	mutation	for	the	clerk 
				Mutation	idxClerk	=	new	Mutation(encode(clerk)); 
				idxClerk.put(CF,	encode(orderkey),	EMPTY_BYTES); 
				indexWrtr.addMutation(idxClerk); 
} 
 
Once all the Mutations are created, we close the file reader and our MultiTableBatchWriter.  
We’ve now ingested and indexed the TPC-H orders data set. 
 
mtbw.close(); 
rdr.close(); 
 
We can then build this program and use it to load data into the Accumulo data and index tables. 

Searching for Data using the Accumulo APIs 
Now that we have ingested our data set, we move our attention to the second application.  We’ll 
be creating a Java application that accepts clerk IDs via the command line.  Using these clerk 
IDs, we search the index table for order IDs containing clerk data, then we use another 
BatchScanner	to search the main orders table for the full row.  This is a common Accumulo 
design pattern, often referred to as secondary indexing.  By duplicating data in another table, we 
can drastically reduce the runtime of a query by first querying the index table to get all row IDs 
that contain a specific field value.  Using these IDs, we then go to the main data table and 
retrieve rows by their unique identifier. 
 
We start as we did before, by creating a Connector	from a new ZooKeeperInstance. 
 



ZooKeeperInstance	inst	=	new	ZooKeeperInstance("default",	"localhost:2181"); 
Connector	conn	=	inst.getConnector("root",	"secret"); 
 
We then move on to creating and configuring a BatchScanner	to search for data in our index 
table where the row ID is equal to the search term.  We scan the index table and extract the 
column qualifier (which is a row ID in the orders table) and add it to a List	of Range	objects 
that we will use shortly. 
 
BatchScanner	idxScanner	=	conn.createBatchScanner(INDEX_TABLE,	 

new	Authorizations(),	10); 
LinkedList<Range>	searchRanges	=	new	LinkedList<Range>(); 
 
String[]	searchTerms	=	//	...	retrieved	from	the	command	line 
for	(String	searchTerm	:	searchTerms)	{ 
				searchRanges.add(new	Range(searchTerm)); 
} 
 
//	Set	the	search	ranges	for	our	scanner 
idxScanner.setRanges(searchRanges); 
 
//	A	list	to	hold	all	of	the	order	IDs 
List<Range>	orderIds	=	new	ArrayList<Range>(); 
String	orderId; 
 
//	Process	all	of	the	records	returned	by	the	batch	scanner 
for	(Map.Entry<Key,	Value>	record	:	idxScanner)	{ 
				//	Get	the	order	ID	and	add	it	to	the	list	of	order	IDs 
				orderIds.add(new	Range(record.getKey().getColumnQualifier())); 
} 
 
//	Close	the	batch	scanner 
idxScanner.close(); 
 
Now that we have the row IDs, we create another BatchScanner	against the main data table 
and set the ranges to our list of order IDs and create a bunch of local Java objects to grab the 
field data.  We also configure a WholeRowIterator	to simplify the scanning task.  This iterator 
encodes all of the key/value pairs that share the same row ID into a single entry.  We can then 
decode this on the client side to provide row isolation as well as simplify the iteration process. 
 
BatchScanner	dataScanner	=	conn.createBatchScanner(DATA_TABLE, 

new	Authorizations(),	10); 
dataScanner.setRanges(orderIds); 
dataScanner.addScanIterator(new	IteratorSetting(1,	WholeRowIterator.class)); 
 



Long	orderkey	=	null; 
...	//	bunch	of	other	local	variables	to	store	the	fields 
 
We then begin scanning data, decoding the row into a SortedMap	for us to iterate over.  We 
then get the column qualifier and, based on the value of the qualifier, we decode the value into 
the local variable. 
 
Text	row	=	new	Text(); 
Text	colQual	=	new	Text(); 
for	(Map.Entry<Key,	Value>	entry	:	dataScanner)	{ 
				//	Get	the	orderkey	from	the	row 
				entry.getKey().getRow(row); 
				orderkey	=	decode(Long.class,	row.getBytes(),	row.getLength()); 
 
				//	Decode	the	row	into	a	map	of	entries	and	iterate	over	these 
				SortedMap<Key,	Value>	rowMap	= 

WholeRowIterator.decodeRow(entry.getKey(),	entry.getValue()); 
				for	(Map.Entry<Key,	Value>	record	:	rowMap.entrySet())	{ 
								//	Get	the	column	qualifier	from	the	record's	key 
								record.getKey().getColumnQualifier(colQual); 
 
								//	Switch	on	the	column	qualifier	and	decode	the	value 
								switch	(colQual.toString())	{ 
												case	CUSTKEY_STR: 
																custkey	=	decode(Long.class,	record.getValue().get()); 
																break; 
												case	ORDERSTATUS_STR: 
																orderstatus	=	decode(String.class,	record.getValue().get()); 
																break; 
												case	TOTALPRICE_STR: 
																totalprice	=	decode(Double.class,	record.getValue().get()); 
																break; 
												case	ORDERDATE_STR: 
																orderdate	=	decode(Date.class,	record.getValue().get()); 
																break; 
												case	ORDERPRIORITY_STR: 
																orderpriority	=	decode(String.class, 

record.getValue().get()); 
																break; 
												case	CLERK_STR: 
																clerk	=	decode(String.class,	record.getValue().get()); 
																break; 
												case	SHIPPRIORITY_STR: 



																shippriority	=	decode(Long.class,	record.getValue().get()); 
																break; 
												case	COMMENT_STR: 
																comment	=	decode(String.class,	record.getValue().get()); 
																break; 
												default: 
																throw	new	RuntimeException("Unknown	qualifier	"	+	colQual); 
								} 
				} 
 
After we have processed the row, we format our output string and print it.  Once all of the rows 
have been processed, we close the data scanner. That is our data retrieval application. 
 
				System.out.println(format("%d|%d|%s|%f|%s|%s|%s|%d|%s",	 

orderkey,	custkey,	orderstatus,	totalprice,	orderdate,	 
orderpriority,	clerk,	shippriority,	comment)); 

} 
 
//	Close	the	batch	scanner 
dataScanner.close(); 
 
After we run the ingestion program, we can run the clerk search program to retrieve records 
from the orders table that were rung up by given clerks.  When looking for all the orders rung up 
by clerks 1 and 2, we receive 2,961 rows in 2.195 seconds.  
 
As we can see, this approach to implementing an Accumulo query application in Java is quite 
verbose.  Additionally, should you want to issue another query, you need to re-write your 
application.  Should you want to write a complex query containing joins, grouping, ordering, 
and/or additional predicates, you will need to plan significant development time to complete your 
application. 
 
With the Presto connector, querying data in Accumulo is vastly simplified, and the connector 
provides a framework for advanced ad-hoc queries using ANSI SQL.  We’ll now take a look at a 
Presto approach to our application. 

Clerk Search - A Presto Application 
After installing and starting Presto, we open a connection using the Presto CLI tool and create a 
table to store our data.  We include a table property called index_columns	to tell the Accumulo 
connector that we want to index data in the clerk	column. 
 
$	presto	--server	localhost:8080	--catalog	accumulo	--schema	default 
presto:default>	CREATE	TABLE	orders	( 
																				orderkey	BIGINT, 



																				custkey	BIGINT, 
																				orderstatus	VARCHAR, 
																				totalprice	DOUBLE, 
																				orderdate	DATE, 
																				orderpriority	VARCHAR, 
																				clerk	VARCHAR, 
																				shippriority	BIGINT, 
																				comment	VARCHAR 
																)	WITH	( 
																				index_columns	=	'clerk' 
																); 
 
This command will create the orders table in Accumulo as well as the table used to store the 
index.  After the table has been created, we have two choices for data ingestion.  We could 
issue a series of INSERT statements to have the connector write the code, but this is not a high-
throughput operation.  Instead, we will use the PrestoBatchWriter	that is provided with the 
connector. 
 
The PrestoBatchWriter	class is intended to be used programmatically, but can also be 
executed as a command-line program to ingest delimited lines of data into Accumulo.  It	is a 
wrapper for the regular Accumulo BatchWriter, with the added benefit of using Presto 
metadata to automatically index columns of data.  Additionally, the PrestoBatchWriter	tracks 
metrics about the index table to allow the connector to make decisions on whether or not to use 
the index (via configurable heuristics). 
 
We’ll compile and invoke this tool against the orders data set to ingest the data into Accumulo, 
telling the tool we want to ingest orders.tbl into the default.orders table, and that it is pipe-
delimited data.  This process of ingestion is really no different from our previous Java 
application -- it is the querying interface that drastically changes. 
 
$	java	-jar	target/presto-accumulo-tools-0.142-ANY.jar	batchwriter	\ 

-s	default	-t	orders	-d	\|	-f	orders.tbl 
...	log	messages	... 
28360	[main]	INFO		tools.PrestoBatchWriter:	Wrote	1500000	mutations	to	table 
 
Now that we have data in our table, we can issue SQL statements using the Presto CLI to 
interact with our data. 
 
presto:default>	SELECT	*	FROM	orders 
																WHERE	clerk	IN	('Clerk#000000001',	'Clerk#000000002'); 
 
Using practically the same process as programmed before, the connector knows the ‘clerk’ 
column is indexed by the metadata associated with the orders	table.  The connector scans the 
index column for all the order IDs processed by clerks one or two, then it queries the data table 



in parallel to scan the main data table.  This query executes in 1.8 seconds – 15 percent faster 
than our previous Java application. 
 
Certainly a much easier interface -- we didn’t need to deal with writing any Java code to query 
the tables.  Additionally, we now have a very powerful SQL interface to work with our orders 
table -- but why stop there when we can quickly create the remaining TPC-H tables, ingest the 
data, and then run the TPC-H benchmark test suite!  In the next section, we’ll take a look at 
some performance numbers running the TPC-H benchmarks. 

TPC-H Benchmark 
The TPC-H query set contains 22 queries, often joining multiple tables together, grouping data, 
ordering data, and calculating aggregates.  Of the 22 queries, Presto can execute 13 of them.  
The remaining nine require functionality that Presto does not yet support. 

Effect of Tablet Splits on Query Time 
The purpose of this test is to see if the query time is improved as the number of Accumulo 
tablets in each table increases.  Here, the TPC-H benchmark suite is executed via Presto.  Each 
query is run three times and the numbers shown below are the average for the three runs.  The 
Accumulo tables were then split into two tablets, and the suite was run again.  This process 
continues exponentially up to 64 split points (65 tablets). 
 
This graph displays the query runtime of each of the above mentioned queries. As the number 
of Accumulo tablets increases, you can see that the execution time changes linearly as is 
expected.  The blue line is the baseline query with only one tablet (no splits).  The orange line is 
the query time with one Accumulo split, which created two tablets and cut the query time nearly 
in half. 



 
 
As the number of tablets is increased, the query time continues to drop, until around 17 tablets 
(16 split points).  However, increasing the number of tablets further, does not reduce the query 
time.  This is either because the Tablet Servers are saturated and unable to return data fast 
enough, or the improvement in the scan time is negligible and most of the runtime is spent 
planning the query, returning the results, and executing any non-TableScan nodes in the query 
plan. 
 
In short, creating tablets allows Presto workers to scan the Accumulo tables in parallel.  The 
connector creates one Presto split per Accumulo tablet; with only one tablet a single Presto 
worker is responsible for scanning the entire table.  As we split the table, the connector can 
create multiple scan tasks, improving the scan time and therefore the overall query time.  An 
Accumulo table should always be split appropriately to improve the scan time of a Presto query 
that would scan the entire table. 

Effect of Secondary Indexing on Query Time 
This test leverages the indexing scheme built into the Presto connector.  The intention of this 
test is to demonstrate how beneficial the secondary indexing can be for queries which contain 
predicates that will limit the amount of data retrieved from an individual table. 
 
The below graph plots each of the selected TPC-H queries with the secondary indexing 
disabled (in blue) and enabled (in orange). 
 



 
 
The only queries here that benefit from the secondary indexing at all are queries 6 and 12.  In 
query 6, 1.3% of the largest TPC-H table, lineitem, is actually scanned when the predicates are 
taken into consideration.  Query 12 scans 4.4% of the lineitem table.  When we enable the 
secondary indexing, only these small percentages of the tables are scanned. 
 
For the remaining queries, 100% of the tables in the queries are scanned.  When the secondary 
index is used, each distinct row ID is packed into a Presto split, 10,000 row IDs per split, and 
then sent off to a Presto worker to be pulled from Accumulo using a BatchScanner.  We are 
basically executing a full table scan, but requesting every single row ID instead of just scanning 
the entire table using fewer Accumulo Range objects. 
 
It is not surprising that the queries which scan 100% of the table do not derive any benefit from 
the secondary indexing.  Only queries which scan a small number of rows from a table can 
leverage the secondary indexing.  This optimization is tunable using session parameters which 
can be set for each distinct query. 

Conclusion 
By using the Presto Connector for Apache Accumulo, users are able to execute efficient ANSI 
SQL queries against relational data sets for rapid exploration and production analytics.  This 
drastically reduces the development time to extract data from Accumulo.  The methodologies 
used by the Presto Connector follow common design patterns used by Accumulo application 
developers today. 



Features of the Presto-Accumulo Connector 
● Creating/dropping tables backed by Accumulo, including specifying locality groups and 

indexed columns 
● Creating/dropping views 
● Inserting data using SQL 
● High-throughput ingestion of data via PrestoBatchWriter 
● Predicate pushdowns on row ID column and indexed columns 
● External table support for existing data sets 
● Store values as strings or using Accumulo’s lexicoder API 
● Scan-time authorizations via a table property 
● Scan-time user impersonation via a session property 
● Additional session properties to enable/disable optimizations and tune the indexing 

heuristics 
● Pluggable metadata storage if not using Zookeeper 

 
If you find this interesting, we’d love to hear from you – and we are hiring! 


