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ABSTRACT

Prices of cryptocurrencies have shown large fluctuations. However, they have been progres-
sively adopted as an asset class by financial institutions. A question naturally arises: is the
crypto class exceptional in terms of its volatility dynamics and predictability? In this study,
we have selected instruments from a wide range of categories for comparison with cryp-
tocurrencies. We show that from both the perspectives of persistence and mean reversion,
cryptocurrencies is similar to instruments in other asset classes. We then examine volatility
predictability using the heterogeneous autoregressive (HAR) model and Random Forests
(RFs). In-sample and out-of-sample model performances are evaluated using the correla-
tion coefficient between observed and predicted. In both cases, the correlation decreases
with increasing prediction horizon. The out-of-sample correlation drops more rapidly than
the in-sample case, and the RF model in general outperforms the HAR model. From the
correlation-prediction horizon curves, we see that the crypto asset class behaves in line with
instruments in other asset classes. We conclude that the volatility of cryptocurrencies is on
average as predictable as for other instruments.



1 Are Cryptocurrencies Exceptional?

The prices of cryptocurrencies have shown large fluctuations. In 2016, the price of Bitcoin rose by 125% and
in 2017 the price rose by more than 2,000%. Following the 2017 peak, Bitcoin’s price receded once more. In
2021, Bitcoin continued to set new all-time highs, more than tripling the peak price Bitcoin achieved during
the 2017 bull run. Following the illegalization of all cryptocurrency transactions or facilitation announced by
China’s government and central bank, Bitcoin’s price dropped more than half through August 2021 to around
$29,700 as miners scrambled to relocate (Reiff 2022).

Why are cryptocurrencies so volatile? Apart from the government regulation factor, the traditional supply-
and-demand mechanism is pointed out as a dominant factor (Reiff 2022): by design, Bitcoin is limited to 21
million coins–the closer the circulating supply gets to this limit, the higher prices are likely to climb. But it
is difficult to predict what will happen to prices when the limit is reached. On another note, cryptocurrencies
are still new and remain in the price discovery phase when their “terminal values” are still undefined (Sigalos
2021).

Cryptocurrencies has been progressively adopted as an asset class by financial institutions. According to a
2021 annual global crypto hedge fund report by PwC (PwC 2021), the total assets under management (AuM)
of crypto hedge funds globally increased to nearly US$3.8 billion in 2020 from US$2 billion the previous
year, and the percentage of crypto hedge funds with AuM over US$20 million increased in 2020 from 35% to
46%. According to the 2021 Q3 quarterly report published by Crypto Fund Research (CryptoFundResearch
2021), as of the end of report period, there were more than 850 crypto funds across the globe with primary
offices in more than 80 countries, and the total crypto fund assets under management climbed to US$59.6
billion from US$8.3 billion in 2018 Q3.

There are well-known models for describing the dynamics of volatility and for forecasting, such as ARCH
(Engle 1982), GARCH (Bollerslev 1986), HAR (Corsi 2009), etc. A question naturally arises: Is the crypto
asset class unique or exceptional in terms of its volatility dynamics and predictability?

In order to assess uniqueness or characteristics of crypto volatility, we have selected instruments from a wide
range of categories for comparison. Table 1 lists considered instruments grouped by categories (Others are
used not for comparison but as model input features in a later section).

The evolution of volatility over time is complex, but from the vast literature on this subject, two properties are
widely recognized: persistence and mean reversion. We will discuss both in the following subsections.

1.1 Persistence

An important property of volatility recognized widely in literature is persistence (e.g., Mandelbrot 1963,
Ding et al. 1993, Cont et al. 1997, and Guillaume et al. 1997). A quantitative manifestation of it is that,
while returns themselves are uncorrelated, absolute returns or their squares (proxies for volatility) display a
significant and slowly decaying autocorrelation (e.g., Ding et al. 1993, Cont 2007, etc.).

Figure 1 shows the partial autocorrelation functions (PACF) of absolute return timeseries for Bitcoin/USD
cross (XBTUSD) along with five instruments representing currency, equity index, fixed income, commodity,
and gold. The PACF gives the partial correlation of a stationary time series with its own lagged values, effec-
tively removing the effects of shorter lags. The use of this function was introduced by Box et al. (2008) for
identifying the order of an autoregressive process. We use PACF here as the manifestation of self persistence.
XBTUSD has a close to 0.4 lag-1 value, comparable to the high values for SPX, GT10 and CL1. It takes
about 10 days for the XBTUSD PACF to fall below a low reference level of 0.05, again comparable to other
instruments.

1.2 Mean Reversion

Mean reversion is another generally observed property of volatility (Papanicolaou and Sircar 1999). It’s
formulated in several stochastic volatility models, two widely referenced of which are examined with our
data:

• Feller or Cox-Ingersoll-Ross process (Cox et al. 1985, Heston 1993):

dνt = α(µ− νt)dt+ σ
√
νtdWt (1.1)
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• Ornstein-Uhlenbeck process (Nelson 1990, Papanicolaou and Sircar 1999):
dνt = α(µ− νt)dt+ σdWt (1.2)

where νt is the instantaneous variance,Wt is a Wiener process, and α, µ and σ are parameters. The parameter
α corresponds to the speed of adjustment to the mean µ, and σ corresponds to volatility.

Table 1: Instruments in major asset classes/categories used for comparison of volatility characteristics.

Asset Class Instrument Description

Crypto

XBTUSD Curncy Bitcoin/USD Cross Rate
XBNUSD Curncy Bitcoin Cash/USD Cross Rate
XETUSD Curncy Ethereum/USD Cross Rate
XDHUSD Curncy DASH/USD Cross Rate
EOSUSD Curncy EOS/USD Cross Rate
XTHUSD Curncy Ethereum Classic/USD Cross Rate
XLCUSD Curncy Litecoin/USD Cross Rate
XMRUSD Curncy Monero/USD Cross Rate
XRPUSD Curncy XRP/USD Cross Rate
XZCUSD Curncy Zcash/USD Cross Rate

Equity Index

SPX Index S&P 500 Index
UKX Index FTSE 100 Index
NKY Index Nikkei 225 Index

MXWO Index MSCI World Index
MXEF Index MSCI Emerging Markets Index

MXWD Index MSCI ACWI Index

Fixed Income

GT10 Govt Generic United States 10 Year Government Note
GTFN10Y Govt Generic FANNIE MAE 10 Year Government Bond
GTFH10Y Govt Generic FREDDIE MAC 10 Year Government Bond

GTJPY10Y Govt Generic Japan 10 Year Government Bond
GTDEM10Y Govt Generic Germany 10 Year Government Bond

Commodity

CL1 Comdty Generic 1st Crude Oil, WTI
NG1 Comdty Generic 1st Natural Gas
HG1 Comdty Generic 1st Copper
W 1 Comdty Generic 1st Wheat
CT1 Comdty Generic 1st CT Future

Currency

EURUSD Curncy EUR/USD
GBPUSD Curncy GBP/USD
AUDUSD Curncy AUD/USD
USDJPY Curncy USD/JPY

DXY Curncy US Dollar Index Spot Rate
XAU Curncy Gold United States Dollar Spot

Crypto-Related Equity
RIOT US Equity Riot Blockchain Inc (U.S.)

MARA US Equity Marathon Digital Holdings Inc (U.S.)
GBTC US Equity Grayscale Bitcoin Trust BTC (U.S.)

Others
M2 Index Federal Reserve United States Money Supply M2 SA

VIX Index Chicago Board Options Exchange Volatility Index

Figure 2 plots increments of squared weekly returns against their starting values for XBTUSD along with
five other instruments. We use the squared return here as a proxy for variance. All six instruments show a
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decreasing trend, from positive increments when starting values are low to negative increments when starting
values are high. The trends are also approximately linear, consistent with Equation 1.1 and Equation 1.2 with
dt equal to one week (similar trends exist for daily increments with slightly larger scattering). This inverse
relationship makes volatility eventually revert to its long-run average level.

The volatility model parameters can be estimated using maximum-likelihood. For the CIR process, νt+∆

(∆ being a small increment) follows a generalized chi-square distribution given νt (Cox et al. 1985); for the
Ornstein-Uhlenbeck process, νt+∆ follows a Normal distribution given νt (Papanicolaou and Sircar 1999).
Table 2 shows model parameters and negative log-likelihood estimated using weekly returns for the 10 cryp-
tocurrencies and other 5 instruments. The negative log-likelihood (NLL) values for the CIR model are much
smaller than those for the Ornstein-Uhlenbeck model, showing the former is a better model. Under the CIR
model, the volatility σ parameters are much greater for the cryptocurrencies than for the other 5 instruments.
But the noise levels relative to the long-run averages as measured by σ/

√
µ ratios are on average compara-

ble.

Table 2: Volatility model parameters estimated using maximum-likelihood method. r2
w(t)/wd is used for νt

in the models (Equation 1.1 and Equation 1.2), where rw(t) is weekly return at time t and wd number of days
in a week (7 for cryptocurrencies and 5 for other instruments). NLL is the average negative log-likelihood at
optimal model parameters. Data range: 2011-01 to 2021-12.

Instrument
Cox-Ingersoll-Ross process Ornstein-Uhlenbeck process

α µ σ σ/
√
µ NLL α µ σ σ/µ NLL

XBTUSD Curncy 0.22 36.98 3.99 0.66 4.50 0.18 36.88 67.92 1.84 6.11
XBNUSD Curncy 0.47 49.66 6.86 0.97 4.90 0.40 49.75 101.01 2.03 6.15
XETUSD Curncy 1.43 31.51 9.49 1.69 4.45 1.02 31.51 83.55 2.65 5.49
XDHUSD Curncy 0.39 45.14 5.90 0.88 4.80 0.37 45.12 108.38 2.40 6.25
EOSUSD Curncy 1.34 35.91 9.81 1.64 4.58 0.91 35.88 106.34 2.96 5.79
XTHUSD Curncy 0.32 46.74 5.47 0.80 4.81 0.27 46.69 101.95 2.18 6.35
XLCUSD Curncy 1.48 31.18 9.61 1.72 4.44 1.25 31.18 83.59 2.68 5.39
XMRUSD Curncy 0.39 25.77 4.50 0.89 4.24 2.74 25.43 140.06 5.51 5.51
XRPUSD Curncy 0.51 41.47 6.52 1.01 4.72 0.38 41.37 95.18 2.30 6.11
XZCUSD Curncy 1.21 39.12 9.73 1.56 4.67 0.83 39.35 118.66 3.02 5.94
EURUSD Curncy 0.63 0.25 0.56 1.12 -0.40 0.56 0.25 0.43 1.75 0.52
SPX Index 0.50 0.89 0.94 1.00 0.86 0.22 0.89 1.80 2.01 2.36
GT10 Govt 0.39 6.92 2.32 0.88 2.88 0.18 6.92 10.86 1.57 4.22
CL1 Comdty 0.42 9.84 2.87 0.91 3.21 0.40 9.66 63.20 6.54 5.66
XAU Curncy 0.81 0.94 1.23 1.27 0.94 0.56 0.94 2.62 2.79 2.33
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Figure 1: Partial autocorrelation functions of absolute return timeseries for six instruments. Shaded area
indicates 95% confidence region. The black horizontal line in each subplot is for PACF = 0.05. Data range:
2011-01 to 2021-12.
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Figure 2: Increments of squared weekly returns against starting values. Circles and error bars are means and
their standard deviations of y-values in x-bins. Data range: 2011-01 to 2021-12.
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2 Volatility Predictability

2.1 Model Performance Metrics

In this study we use the Pearson correlation coefficient as a model performance metric, with the focus on
measuring how closely predicted volatilities follow the trend of observed, disregarding the absolute scale.
The Root Mean Squared Errors (RMSE) is also provided for out-of-sample performance, as a complementary
metric to measure scale. It serves as a check on the correlation metric.

The correlation coefficient can be a better metric than RMSE for circumstances where matching the trend is
predominately important. To illustrate this, let’s consider the following scenario:

Observed/Predicted Values
Observed y1, y2, · · · , y2n

Predicted by Model 1 y1 + ∆, y2 + ∆, · · · , y2n−1 + ∆, y2n + ∆

Predicted by Model 2 y1 + ∆, y2 −∆, · · · , y2n−1 + ∆, y2n −∆

where 2n is the number of observations, the predicted values by model 1 is the observed plus a constant ∆,
and the predicted values by model 2 is the observed plus ∆ for odd indices and minus ∆ for even indices.
The RMSE for both models is ∆. The correlation coefficient is 1 for model 1 and smaller than 1 for model
2. While model-1 predictions follow precisely the trend of observed, model-2 predictions oscillate about the
observed. In this case, RMSE misses the point, but correlation coefficient captures it.

On another note, the correlation coefficient tends to be less sensitive to outliers than RMSE: outliers appear
in both the numerator and denominator of its formula, reducing their overall effects. This is important con-
sidering that jumps are present in volatility timeseries (Bates 1996, Barndroff-Nielsen and Shephard 2004,
Todorov and Tauchen 2011).

2.2 HAR Model

Corsi (2009) designed a heterogeneous autoregressive (HAR) model to parsimoniously capture the strong per-
sistence typically observed in realized variance (RV). The idea was motivated by the so-called Heterogeneous
Market Hypothesis (Müller et al. 1993), and the model put the focus on the heterogeneity that originates from
the difference in the temporal horizons. This temporal heterogeneity was considered a result of financial mar-
ket participants having a large spectrum of trading frequencies. The traditional ARCH model (Engle 1982)
is generally considered too simplistic to satisfactorily describe the long-run dependencies in most realized
volatility series (see, e.g., Bollerslev et al. 2016).

The HAR model specifies RV as a linear function of daily, weekly and monthly realized variance components,
and can be expressed as

RV(d)
t+1d = c+ β(d)RV(d)

t + β(w)RV(w)
t + β(m)RV(m)

t + ωt+1d (2.1)

where ωt+1d is an error term, c, β(d), β(w), and β(m) are model parameters, RV(d)
t+1d is the realized variance

of day t+ 1d, and RV(d)
t , RV(w)

t =
∑wd

i=1 RV(d)
t−i+1/wd, and RV(m)

t =
∑md

i=1 RV(d)
t−i+1/md denote the daily,

weekly and monthly lagged realized variance as of day t, respectively, with wd denoting the number of days
in a week and md denoting the number of days in a month. In this study, we set wd = 7 and md = 30 for
cryptocurrencies and wd = 5 and md = 22 for other instruments.

To ensure the positiveness of estimated RV (d)
t+1d, we use logarithm-scaled RV in Equation 2.1 in this study.

We also use the same model for h-day ahead prediction:

log(RV(d)
t+h) = ch + β

(d)
h log(RV(d)

t ) + β
(w)
h log(RV(w)

t ) + β
(m)
h log(RV(m)

t ) + ωt+h (2.2)
where the set of model parameters are specific to h.

2.2.1 In-Sample Model Performance

Figure 3 shows the HAR model fitting results for a range of prediction horizons and the instruments in
different asset classes. The correlation coefficients between observed and predicted decrease with increas-
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ing prediction horizon across the board. Among the 10 cryptocurrencies, XBT shows consistently higher
correlations than for other coins. In general, the fixed income instruments show higher correlations than
for other instruments, with lowest correlations observed for the traditional currencies. The similarity in the
Correlation-Horizon curves among the asset classes illustrates that the crypto is not exceptional in volatility
predictability.
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Figure 3: In-sample correlation coefficients (R) between observed and predicted volatilities for cryptocurren-
cies, equity indices, government and agency bonds, commodities, and currencies. The absolute return is used
as a proxy for observed volatility. exp(./2) is applied to output of Equation 2.2 for predicted volatility. Data
range: 2011-01 to 2021-12.
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2.2.2 Out-Of-Sample Model Performance

Figure 4 shows the HAR model out-of-sample prediction results for a range of prediction horizons and the
instruments in different asset classes. In general, the correlation coefficients between observed and predicted
decrease with increasing prediction horizon, with a slight tipping up at long horizons ( ≥ 40) for the crypto
and equity index categories. Among the 10 cryptocurrencies, XBT shows higher correlations than for other
coins at most horizons. The fixed income instruments show higher correlations than for other instruments.
For XBT, its correlations are within the range for other asset classes. This again illustrates that the crypto is
not exceptional in volatility predictability.

2.3 Random Forest Method

Although volatility demonstrates strong persistence, which justifies models such as HAR model, the model
performance as measured by the correlation coefficient is not quite satisfactory. We explore Random Forests
(RF) (Breiman 2001) to see if we can improve prediction accuracy by drawing information from other instru-
ments and by relaxing the linearity assumption.

For a given target instrument, all the 35 instruments listed in Table 1, plus the ones in Others, are used as
RF model input features. To include realized variance with past memory longer than one month, we create a
quantity denoted as RVe for the exponentially weighted moving average (EWMA): RVe

t = λRVe
t−1 + (1 −

λ)r2
t , where the decay factor λ is set to 0.97. This value corresponds to a half-life of 23 days. Specifically,

the input training dataset of (feature vector, label) pairs is compiled as follows:

Xt =

[(
RV(i)dt ,RV(i)wt ,RV(i)mt ,RV(i)et ,SIGN(rt(i))|i = 1, 2, · · · , 35

)
,

VXd
t ,VXw

t ,VXm
t ,VXe

t ,M2dt ,M2wt ,M2mt
]

yt = |rt+h|

where t is the index of sample dates, i is the index of instruments, h is the prediction horizon, rt+h is the
h-ahead return of the target instrument, VXd, VXw, VXm and VXe are respectively daily, weekly, monthly,
and EWMA average of squared VIX values, and M2d, M2w and M2m are respectively daily, weekly and
monthly average of M2 Index values.

At time indexed by t, we predict h-ahead volatility using the model trained with rolling latest dataset of size
m: {Xs, ys|s = t−h−m+1, · · · , t−h}. m = 120 is used for this study, which is about the number of past
observations with weights greater than 0.001 for volatility estimation using EWMA with the recommended
decay factor of 0.94 (J.P.Morgan/Reuters 1996).

A justification for treating instruments as features is the expectation that they represent different dimensions
or aspects of the complex market: financial, economic, monetary, etc., since the instruments are selected from
different asset classes and carry over diverse information.

Figure 5 shows the out-of-sample correlation coefficient comparison between the RF and HAR models for
six representative instruments from major asset classes. It shows that RF outperforms HAR with only a
few exceptions (For XBTUSD, HAR outperforms RF by small margins for prediction horizons 40 and 50).
Figure 6 compares the out-of-sample Root Mean Squared Errors (RMSE) of the two models. For XBTUSD,
the result is mixed: RF has smaller RMSE for prediction horizon < 10, but the pattern is reversed for horizon
≥ 15. For the other 5 instruments, RMSE of RF is mostly smaller than that of HAR, and for certain prediction
horizons, it’s much smaller.
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Figure 4: Out-of-sample correlation coefficients (R) between observed and predicted volatilities for cryp-
tocurrencies, equity indices, government and agency bonds, commodities, and currencies. The absolute
return is used as a proxy for observed volatility. exp(./2) is applied to output of Equation 2.2 for predicted
volatility. Each prediction is made using a model fitted with a rolling window of 120 days. Data range:
2011-01 to 2021-12.
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Figure 5: Comparing out-of-sample correlation coefficients (R) between observed and predicted volatilities:
points with square marks correspond to RF prediction results; those with circle marks correspond to HAR
results. The six instruments represent major asset classes. The absolute return is used as a proxy for observed
volatility. The scikit-learn RandomForestRegressor is used as the RF model implementation, and the training
parameters are: n estimators = 300, max depth = 3, and max features = 10. Data range: 2011-01 to
2021-12. 11
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Figure 6: Comparing out-of-sample model RMSEs: points with square marks correspond to RF prediction
results; those with circle marks correspond to HAR results. The six instruments represent major asset classes.
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as the RF model implementation, and the training parameters are: n estimators = 300, max depth = 3,
and max features = 10. Data range: 2011-01 to 2021-12.
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3 Discussion

Figure 7 shows average feature importance for different prediction horizons. Note the following:

• for horizon 1, auto-feature RVd (“XBTUSD Curncy” in the figure) is on the top, whereas for horizons
5, 10 and 20, auto features fall off the top five.

• for large horizons 40 and 60, auto-features RVe (“XBTUSD Curncy(EWMA)” in the figure) come
back on top three.

• except for horizon 1, the EWMA or monthly lagged features dominate.

This figure suggests that the persistence factor dominates predictions for small horizons (H < 5), diminishes
with increasing horizon up to an intermediate level of 20, then comes back at large horizons (≥ 40). This
explains the R-HORIZON shapes for the HAR model (see the first subplot in Figure 4). On the other hand,
the RF model performs better for intermediate horizons by utilizing information from other instruments to
make up for the diminishing persistence factor.

We have also explored other machine learning models for the volatility prediction. One such model is LSTM
(Hochreiter and Schmidhuber 1997), which is capable of dealing with timeseries input. Unfortunately, no
results better than with RF have been obtained. However, we don’t conclude that the LSTM model is not
suitable here since we haven’t performed tuning of hyper parameters thoroughly. We leave further exploration
of machine learning techniques on volatility prediction to future work.

From the correlation-prediction horizon curves (Figure 3 and Figure 4), we see that the crypto asset class be-
haves in line with many instruments in other asset classes. We conclude that the volatility of cryptocurrencies
is on average as predictable as for other instruments.
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Figure 7: Average feature importance of RF models trained with rolling window of 120 days. H: prediction
horizon. Data range: 2011-01 to 2021-12.
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