New Energy Outlook
India
Contents

Section 1. Summary and key policy recommendations 1
 1.1. Key findings of the ETS 1
 1.2. Key findings of the NZS 2
 1.3. Policy considerations 6

Section 2. Introduction 11
 2.1. National context 11
 2.2. Scenarios and outlooks at BloombergNEF 14

Section 3. Emissions and abatement 16
 3.1. Emissions 16
 3.2. Abatement 17

Section 4. Energy trends 21
 4.1. Primary energy demand 21
 4.2. Final energy demand 22
 4.3. Electricity demand 23

Section 5. Power sector 25
 5.1. Installed capacity 25
 5.2. Renewable capacity 26
 5.3. Generation 28
 5.4. Dispatchable capacity 30
 5.5. Flexibility 32
 5.6. Power grids 32

Section 6. Hydrogen and CCS 34
 6.1. Hydrogen 34
 6.2. CCS 36

Section 7. End-use sectors 38
 7.1. Industry 38
 7.2. Transport 42
 7.3. Buildings 45

Section 8. Fuel demand 47

Section 9. Investment 49

About us 51
Section 1. Summary and key policy recommendations

India’s transition to a diversified and low-carbon energy system is already underway, driven by supportive national policies and favorable economics. The national and state governments, businesses and industries, research centres and innovators now have the opportunity to accelerate the deployment of established decarbonization technologies, and the development of others, to reach net zero.

This outlook explores India’s energy transition pathways based on the two scenarios developed in BloombergNEF’s New Energy Outlook 2022: the Economic Transition Scenario without emissions constraints, and the Net Zero Scenario subject to a carbon budget consistent with meeting the Paris Agreement goal. Using these scenarios, we explore the implications for India’s power, industry, transport, and buildings sectors, and chart out the investments and policies needed to help India achieve net-zero emissions.

1.1. Key findings of the ETS

The Economic Transition Scenario (ETS) is BNEF’s baseline assessment of how the energy sector might evolve as a result of cost-based technology changes, covering the power, transport, industry and buildings sectors. This explorative scenario developed for the New Energy Outlook employs a combination of near-term policies and market analysis, least-cost modeling, consumer uptake and trend-based analysis to describe the deployment and diffusion of commercially available technologies in the absence of new policy regimes, and uncover the underlying economic fundamentals of the energy transition. It is consistent with a 2.6°C global warming outcome.

BNEF’s base case for India shows energy-related emissions rising by 21% between 2022-50.

- **Power:** It sees India’s power sector being driven mostly by renewables. Falling solar and energy storage costs continue to put pressure on the country’s ageing coal fleet, which today remains the backbone of the power mix. As power demand rises sharply in India, a mix of competitive renewables, balanced with flexible generation technologies, emerges as the lowest-cost portfolio to reliably keep the lights on. Total solar, wind and batteries installations reach 2,165 gigawatts (GW) by mid-century – more than 20 times as much as in 2021. Non-fossil fuel sources form 80% of the electricity generation in 2050. As a result, emissions from the power sector fall 29% from 1,385 million metric tonnes of carbon dioxide (MtCO2) in 2021 to 983MtCO2 in 2050 – the biggest contributor to India’s economy-wide emissions reduction during this period.

1 Solar capacity values are in DC, unless specifically mentioned as AC
• **Fossil fuels:** The use of fossil fuels continues to rise under our base case, reaching 36,543 petajoules (PJ) by 2050, compared to 30,448PJ in 2021. Coal use peaks in 2037, reaching 1,098 million metric tons of coal (Mt of coal) and falling to 970Mt by 2050 – a 20% jump from 2021. Oil sees a similar trend, peaking in 2038 at 270 million tons of oil equivalent (mtoe) and falling to 249mtoe by 2050 – 28% higher than 2021. Gas use continues to decline to 2050, falling 6% from its low base in 2021 of 52 billion cubic meters (bcm). The relevance of gas in the electricity generation mix, which was at a high of an 11% share in 2000, falls to 1% by 2050.

• **Transport:** Under the ETS, electric two- and three-wheeler sales are set to reach more than 24.4 million and 2.7 million units, respectively, in 2050, compared to 233,971 and 384,063 units in 2021. Despite an increased adoption of electric vehicles (EV) from the 2030s in road transport, direct transport-related emissions from road, aviation, shipping and rail sectors rise 38% to 427MtCO2 by 2050 from 309MtCO2 in 2021. Continuously rising demand for air travel, coupled with the relatively poor competitiveness of clean fuels or electrification based on current technology costs, means emissions from aviation rise eightfold by 2050.

• **Industry:** BNEF finds that emissions from steel, aluminum, petrochemicals and cement continue to rise under the base case. Steel, India’s largest emitting industrial subsector, sees emissions almost triple between 2021 and 2050 to 948MtCO2 from 351MtCO2. Coal consumption in steel-making sees a similar growth, reaching 399 million metric tons (Mt) of coal by mid-century. Coal use in the cement industry, the second-largest emitting subsector, grows fivefold to 83Mt of coal by 2050 compared to 2021. Emissions from the cement sector rise by five times and reach 289 MtCO2 by mid-century.

• **Investment:** Total investment in India’s energy system is nearly $7.6 trillion between 2022 and 2050 in the ETS, representing $262 billion each year on average. The rising uptake of EVs in this period represents a significant investment opportunity, amounting to $1.9 trillion. As India’s power system grows while decarbonizing between 2022 and 2050, $1.3 trillion is invested on the power grid and $1.8 trillion on power capacity. This amounts to $106 billion per year on average invested in power capacity and the grid to 2050. Capital requirements for fossil fuel processes add up to $1.2 trillion to 2050, representing 16% of overall investments.

1.2. Key findings of the NZS

The Net Zero Scenario (NZS) is based on the global *New Energy Outlook*. This normative climate scenario is aligned with the Paris Agreement to keep global warming well below 2C. It describes a credible stretch to reach net-zero emissions in 2050, with no overshoot or over-reliance on net-negative carbon removal technologies post-2050. The NZS uses sector-level carbon constraints for an orderly transition and deploys technologies with credible cost pathways.

2 Fossil fuel processes refers to upstream, midstream and downstream components of coal, oil and gas processes.
Figure 1: India’s energy-related emissions and net-zero carbon budget

- **Power**: A rapidly decarbonized power system becomes the backbone of India’s energy transition in the NZS. Higher power demand from increased electrification in the Net Zero Scenario means **India reaches 3,000GW of wind and solar by 2050** – around 1,300GW more than in the ETS. Investment in power system flexibility is also crucial to back up and enable this rapid electrification and decarbonization of the power mix. Some 572GW of clean dispatchable capacity – in the form of batteries, pumped hydro, hydrogen-fired gas plants, and peaker gas plants paired with carbon capture and storage (CCS) – are operational under the NZS in 2050, 77GW more than in the ETS. Cumulatively, India reaches 114GW of coal paired with CCS, 54GW of gas with CCS, and 97GW of nuclear capacity.

Figure 2: Installed generation capacity and batteries in India by technology/fuel, Net Zero Scenario

Source: BloombergNEF. Note: Includes electricity generation for hydrogen production. Note: CCS – carbon capture and storage, PV – Photovoltaic, CCGT – combined cycle gas turbine.
• **Fossil fuels:** India’s reliance on fossil fuels continues to 2050 but their significance is largely muted. The share of abated fossil fuel use rises from 11% in 2030 to nearly all of the fossil fuel use in 2050. Under BNEF’s NZS, India could stop imports of all fossil fuels by 2050. India consumes around 339Mt of coal in 2050 under the NZS, equivalent to 42% of demand in 2021. India’s oil and gas use decline by 83% and 65% from 2021 levels under the NZS. Most of the demand destruction for liquid fuels arises from the complete electrification of the road transport sector. Domestic coal availability may not be a significant concern as the country had more than 360,000 Mt of coal reserve in March 2022 and cumulative coal use between 2021 and 2050 is 18,868Mt under the NZS. India’s remaining domestic oil and gas reserves were around 6,000 mtoe in 2018 while total consumption between 2018 and 2050 under the NZS is 5,901 mtoe and 9,257 mtoe under the ETS. Hence, the NZS pathway appears more in line with India’s aspiration to become energy independent by 2047.

Figure 3: Fuel use in India by sector, Net Zero Scenario and comparison with ETS

- **Transport:** Road transport electrification under the NZS picks up momentum much faster than in the ETS, accounting for all of India’s emissions abatement in the sector over 2022-50. To reach net zero, the share of EVs in new passenger vehicle sales reaches **100% by 2040** – a milestone not achieved in the ETS before 2050. India relies heavily on EV adoption in passenger and commercial transport to displace carbon emissions from internal combustion engines.

- **Industry:** Steel sector emissions peak in the early 2030s, reaching **463MtCO2** before declining till 2050. Emissions from the cement industry, too, peak around the same time at 120MtCO2. Coal consumption in steel making declines to 77Mt, or half of that in 2021; meanwhile coal consumption in the cement industry stays similar to ETS, albeit paired with carbon capture and storage technologies.
Carbon capture and storage: Our modeling suggests economic deployment of CCS technologies as a cost-effective way to spur the decarbonization of domestic industries, primarily in the cement industry. CCS gains in importance in the 2030s, as tightening sector carbon budgets force hard-to-abate sectors to tackle unabated fossil fuel plants through retrofits or clean greenfield projects. CCS accounts for 10% of total emissions abated over 2022-50 with applications in industry and the power sector. As the carbon budget bites, the annual rate of emissions captured by CCS grows from very low levels in 2022 to 221MtCO2 in 2030, 465MtCO2 in 2040, and 664MtCO2 in 2050. **India’s power sector continues to consume coal even in 2050 in the NZS,** with 162Mt of coal (6000kcal/kg) consumed – nearly 40% of the amount used in the ETS. This is due to the presence of CCS-paired coal power plants in the power sector under the NZS.

Figure 4: India’s carbon emissions reductions from fuel combustion, Net Zero Scenario versus no transition scenario

Source: BloombergNEF. Note: The ‘no transition’ scenario is a hypothetical counterfactual that represents a world in which no further actions are taken in the power and road transport sector to reduce carbon emissions, keeping the current fuel mix constant at 2021 levels and growing proportionally under the same ETS demand forecast. In industries, most sectors continue to use the same fuel mix through 2050 in the no transition scenario. NZS – Net Zero Scenario, CCS – Carbon capture and storage.

Hydrogen: Domestic demand for hydrogen increases to 53MtH2 by 2050 under NZS, about a 10-fold increase from today. New demand for hydrogen is driven by rapid adoption of hydrogen-fired direct-reduction furnaces in the steel industry, taking the demand to 33MtH2 in 2050. Other significant sectors include 7MtH2 for energy industry own-use3, and 5MtH2 for power production as critical back-up. In transport, some 3MtH2 is used either in its pure form or as derivative fuels such as methanol or ammonia to propel aircraft and vessels over medium to long distances. Today, most of the hydrogen in India is produced from unabated

3 ‘Energy industry’ includes legacy uses (eg, as feedstock for ammonia and methanol production or in oil refining) as well as own use for energy producing industries, such as process heating, lighting, and equipment operations.
fossil fuels. By 2050, hydrogen produced with flexible grid-connected electrolyzers powered predominantly by renewables becomes the dominant pathway in India under the NZS.

- **Investment:** To reach net-zero emissions by mid-century, a total of **$12.7 trillion** must be invested in India’s energy system on the demand and supply side, representing an average of $438 billion per year. The increasing adoption of electrification in industrial processes, EVs and electrolyzers for hydrogen production requires a commensurate expansion of India’s power grid. Under the NZS, around **$2.1 trillion** of investment flows toward the grid in India, doubling the length of the network to over 20 million kilometers from 2022 to 2050.

1.3. Policy considerations

Our Net Zero Scenario and Economic Transition Scenario lead to very different outcomes for India’s energy transition, and by extension for the global climate crisis. The Net Zero Scenario, by limiting global warming to 1.77°C, meets the headline goal of the Paris Agreement, while the Economic Transition Scenario breaches it by leading to 2.6°C of warming.

To bend the curve toward the Net Zero Scenario, and toward global net zero by 2050, we identify **five key policy action areas** that should be addressed in the immediate future. There is little time to waste, as the transition must accelerate immediately, and the ETS and NZS trajectories start to diverge as soon as 2023.

Scale up grid investments to enable a renewables-heavy power system

Electricity network operators face challenges from the rapid expansion of variable renewables on the supply side and evolving demand in the form of air-conditioning, electric vehicles and production of green hydrogen. Therefore, higher grid investments are needed to prepare India for a net-zero power system that relies heavily on renewables.

Figure 5: India’s grid length by scenario

<table>
<thead>
<tr>
<th>Year</th>
<th>NZS (million km)</th>
<th>ETS (million km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2022</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2030</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>2040</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>2050</td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

Source: BloombergNEF. Note: NZS – Net Zero Scenario, ETS – Economic Transition Scenario.

Figure 6: India’s grid investment by driver, Net Zero Scenario

<table>
<thead>
<tr>
<th>Period</th>
<th>Asset replacements</th>
<th>System reinforcements</th>
<th>New connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>2022-30</td>
<td>400</td>
<td>800</td>
<td>400</td>
</tr>
<tr>
<td>2031-40</td>
<td>800</td>
<td>1,200</td>
<td>800</td>
</tr>
<tr>
<td>2041-50</td>
<td>1,200</td>
<td>1,600</td>
<td>1,200</td>
</tr>
</tbody>
</table>

Source: BloombergNEF. Note: ETS – Economic Transition Scenario.
Under NZS, India will need $2.1 trillion of grid investment over 2022-2050, of which $1.2 trillion is spent to sustain the existing grid and replace existing assets, and $897 billion to expand the grid for new electricity consumption. In the NZS, the length of the grid doubles to over 20 million kilometers between 2022 and 2050. Over 43% of total grid investments are needed for long distance transmission of power, and the remainder for the distribution segment that supplies electricity to end users. The government needs to consider reforms to enable more grid investments, particularly from the private sector.

Scale up investments in renewables

India’s domestic banks alone may not be able to match the scale or speed required to meet financing requirements under the NZS. India’s cumulative investments in expanding the power generation capacity reaches $2.8 trillion by 2050 under the NZS, of which $2.7 trillion is spent on low-carbon sources. This translates to an average of more than $90 billion of investments annually. Financing for fossil fuel energy supply falls by 55% in NZS, compared to ETS.

Therefore, India needs to tap into all sources of financing. Most Indian power producers rely on commercial loans and some recourse-based debt for building projects, and green bonds are increasingly being used to refinance operating projects. Eight of the global top 10 pension funds and sovereign wealth funds are yet to invest in India’s renewables sector. Investments by India’s pension and life insurance funds are strictly regulated and the institutions are not allowed to invest in renewables. Therefore, the government needs to issue favourable policies and international investors should explore more thoroughly the opportunities for transition investment in India.

Reduce reliance on fossil fuel plants and boost carbon capture technologies

India added 0.6GW of coal power projects in 2022 compared to 15GW of non-fossil capacity. Our NZS shows India can reduce its reliance on unabated coal power plants and invest to capture carbon from any residual fossil-based power projects. Up to 114GW and 54GW of CCS-paired
coal and gas capacity help decarbonize India’s energy sector under our NZS; yet despite this opportunity, carbon capture technologies have not seen significant policy support or development in India.

To accelerate the march towards net-zero emissions, the country needs a CCS/CCUS policy framework that incentivizes setting up a manufacturing base as well as subsidizes consumption of by-products emerging from the CCUS plants. In addition, identifying areas and market platforms for sale of captured CO2 or converted products, such as urea emerging from CCU plants, can improve the economic case for carbon capture technologies.

Figure 9: Electricity generation in India under different scenarios

<table>
<thead>
<tr>
<th>Economic Transition Scenario</th>
<th>Net Zero Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000 TWh</td>
<td>1,000 TWh</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Source: BloombergNEF. Note: CCS – Carbon capture and storage.

Aim for peak industrial emissions within a decade

Industry emissions are set to surpass the power sector by the early 2040s under our base case. Green hydrogen and CCS could play primary roles in decarbonizing the industrial sector. BNEF modelling shows that 54% of emissions abatement between 2022 and 2050 can come from the use of green hydrogen in making steel in the NZS. Whereas CCS helps reduce 56% of emissions from cement manufacturing.

While India has agreed to reach net-zero emissions by 2070, these targets still need to be translated into actions for the companies operating in various industrial sectors. Sector-specific targets – particularly for the various industrial sub-sectors – will give policy direction and timelines for emission reduction by corporates. This can persuade industry players to plan their own decarbonization roadmaps. Under the NZS, India’s industrial sector emissions peak in 2031 and begin a steep decline in the mid-2030s as the use of hydrogen and carbon capture increase to decarbonize steel, cement and petrochemical production. Even though the power and transport sectors have a viable path for decarbonization, they too need to achieve peak emissions as early as 2024 and 2028 to reach net-zero.
Figure 10: Emissions by sector and peak year, India

Full electrification holds the key to eliminating road transport emissions

Road transport is the largest emitter in the transport sector, surpassing shipping and aviation. If left unchecked, emissions could rise to nearly 600MtCO2 by 2050, according to BNEF modeling. Unlike in other sectors, where there could be multiple pathways to achieving net zero emissions, the easiest way to decarbonizing road transport lies in rapid and complete electrification.

A rise in electrification needs to be matched with charging infrastructure that provides access to clean, affordable power. Electricity demand from commercial and passenger vehicles (including India’s growing fleet of electrified two- and three-wheelers) reaches 629TWh in 2050, or less than 10% of total demand under the NZS. While the technology platforms to achieve this outcome are increasingly clear, providing electricity to customers at an affordable rate could be daunting.

India had 26,700 EV chargers at the end of 2022 and wants to scale the number up to 365,000 with at least one charging station for every 3 square kilometers.

Source: BloombergNEF. Note: Labels show year of peak emissions. 'Other' includes agriculture, forestry, fishing, energy industry own energy consumption, and other final energy consumption no further specified.
Figure 11: India’s end-use CO2 emissions in transport subsectors by type/technology, Net Zero Scenario

Source: BloombergNEF. Note: y-axes differ in scale. Bioenergy in Aviation is sustainable aviation fuel. NZS – Net Zero Scenario, CCS – Carbon capture and storage. Efficiency gains in shipping sector come from operational improvements (lower travel speed to improve fuel economy) and technical improvements (hull retrofits, turbulence/drag reduction and better engine design). Operational improvements are expected to deliver greater gains than technical enhancements.
Section 2. Introduction

India has a target of achieving net-zero emissions by 2070. In the interim, the country wants to reduce the emission intensity of its GDP and also have 50% of its power generation capacity based on non-fossil fuel sources by 2030. India’s power sector is decarbonizing rapidly but other areas of the economy need more support.

2.1. National context

India’s decarbonization target

India announced its net-zero target for 2070 at the 2021 COP26 summit in Glasgow. This was aside from other short-term commitments geared toward decarbonizing the power sector such as setting up 500GW of non-fossil fuel based cumulative power generation capacity by 2030. Setting another target, India on Independence Day in 2021 declared the intention to become energy self-reliant by 2047, when the nation marks 100 years of independence.

Less than a year later, India revised its 2030 Nationally Determined Contributions (NDCs), appending the original NDC with a new target of committing to 50% of cumulative power generation capacity from non-fossil fuel based energy sources by 2030. India also intends to reduce its emission intensity of GDP by 45% by 2030 compared to a 2005 baseline, up 10-12 percentage points from its previous commitment made in 2015. Furthermore, climate action has been turning up at the state and city levels with Mumbai, the most populous city in India, announcing its commitment to reach net zero by 2050. State-level climate action plans are under discussion too. At the same time, sectoral targets have begun to emerge, with the Ministry of Steel having set a net-zero commitment by 2070.

Power is the largest emitting sector, but also has a clear path to decarbonization

India’s power system remains primarily coal-driven despite record renewables addition. India has seen a significant amount of renewable capacity deployment, with 53GW of solar and wind added between 2018 and 2022. A record high of 16GW of utility-scale solar was installed in 2022 alone. Yet solar and wind still account for less than a quarter of the power generation capacity (including pumped hydro) in 2022. The trend is also seen in the energy generation mix, with coal being the backbone that accounts for nearly three-quarters of the total power generated in 2022. However this will change quickly as renewables are set to overtake thermal power capacity by the end of this decade, as per the Central Electricity Authority’s (CEA) Report on Optimal Generation Capacity Mix for 2029-30.
To meet its NDC commitments, the national government has announced plans to tender 50GW of renewable capacity every fiscal year from FY 2023 to FY 2028 (India’s fiscal year is from April to March). Standalone wind auctions will represent at least 10GW of the total 50GW tenders, giving a boost to the wind sector. At the same time, coal power capacity expansion is limited to projects that are already under construction – a total of 26GW as per the CEA.

The need for maintaining grid balancing has risen owing to rising renewable penetration. Auctions, a driving force for the renewable build-up, have witnessed an increasing trend in complexity in order to improve overall project capacity factors and offer flexible power supply. Recent auction projects incorporate flexible capacities, such as grid-scale batteries and pumped storage capacity, to deliver round-the-clock or peak power.

Growing electricity demand requires grid expansion while also decarbonizing

Per capita gross electricity demand in India grew by nearly 50% between 2012 and 2022 to about 991 kWh per person per year (Figure 13). India’s per capita electricity usage continues to remain below major developing economies like Brazil, owing to its higher economic reliance on agrarian, low-energy intensity manufacturing and a services-based economy. Population and economic growth over the next three decades mean India’s power system will need to expand and decarbonize simultaneously and at a rapid pace.

Figure 13: Per-capita gross electricity demand across major economies

<table>
<thead>
<tr>
<th>Year</th>
<th>U.S.</th>
<th>Germany</th>
<th>China</th>
<th>India</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>14</td>
<td>10</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>2014</td>
<td>12</td>
<td>8</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>2016</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>2018</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>2020</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>2022</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

Source: BloombergNEF, World Bank

India’s transport electrification is steadily growing, but needs to speed up

Policy support shifting from demand side to supply side

India’s population aged between 16-59 will grow by 13% between 2022 and 2040, the United Nations says. The country’s GDP per capita will triple in the same period. These rises in wealth and working-age population will drive annual passenger vehicle kilometers up by 2.5 times to over 1 trillion in 2040, according to BNEF’s Economic Transition Scenario.

India’s electric vehicle sales are growing across all segments, supported by policy, favorable operating costs, more model launches and falling technology costs. Policy support in India for

4 See Renewables Meet Peak Power Demand in Latest India Auction (web | terminal)
EVs remains strong. In addition to offering demand-side support, the government is now focusing on strengthening local supply chains by subsidizing production.

The Faster Adoption and Manufacturing of Electric Vehicles II (FAME II) scheme launched by the national government in 2019 has been extended till March 2024. This scheme, intended to ramp up EV penetration, has seen some success, becoming an important driver for the two-wheeler transition.

Electric two- and three-wheelers are the fastest growing segments and over the next two decades nearly all sales will be electric. Passenger EV sales have tripled annually in the three years to 2022. Private sales rose due to greater interest in compact SUVs as well as increasing availability of models. Demand from shared mobility services (taxi, ride-hailing, car rentals, government purchases) has also helped boost passenger EV sales as demand for public transport increases steadily. In contrast, bulk procurement tenders, where demand is aggregated across multiple states, are propelling annual electric bus sales. Commercial vehicles will be the hardest to electrify and will need government support to gradually decarbonize.

India has set ambitious hydrogen targets and it has its work cut out to turn them into reality

The national government has ambitious intentions in mainstreaming green hydrogen in line with its intent to become energy independent by 2047 and meet its decarbonization commitments. The National Green Hydrogen Mission sets a goal of producing at least 5 million metric tons of hydrogen (Mt of H2) annually by 2030, a figure equivalent to the current demand for hydrogen in India. It also intends to capture export markets as they mature and possibly reach a potential 10 Mt of H2 per year.

The national government alone has set aside $2.4 billion for the mission. Of the total allocation, 88% is directed toward providing subsidies to bring down the cost of green hydrogen production under the Strategic Interventions for Green Hydrogen Transition (SIGHT) program. The rest of the outlay is allocated for developing green hydrogen hubs, pilot projects and research and development. The mission is expected to bring in nearly $100 billion of total investment as well as contribute toward adding 125GW of renewable capacity by 2030. Waiver of inter-state transmission charges for green hydrogen/ammonia production is expected to improve viability of projects by lowering the cost of building renewable energy and electrolyzer plants in different locations. As per the document, the first phase of the Hydrogen Mission, up to March 2026, is expected to lay the initial foundations through technology advancement and pilot projects across steel, heavy transport and shipping. The focus will shift toward accelerating growth and ensuring competitiveness of green hydrogen with fossil fuels in the second phase. Corporate activity has been buzzing in the relatively nascent sector, and India’s government-owned oil and gas majors have initiated actions on their green hydrogen plans.

India’s focus on localization of clean-tech manufacturing

India has been focusing on boosting indigenous manufacturing through the national government’s production-linked incentive (PLI) schemes. The PLI initiative has been deployed across multiple sectors, aimed at creating national champions that can set up large-scale domestic manufacturing capacity. The incentives under the scheme are linked to actual sales and local value addition, while also factoring in product performance. The scheme also sees a tapering of incentives provided over the years, with the intent being to wean firms off state support and encourage competitiveness.
India’s manufacturing incentives in four energy transition sectors

PLIs for localization of the PV supply chain have seen two successful auctions, which are expected to add 48GW of module manufacturing capacity over the next 3 years. The auctions had 13 distinct winners, with 4 of them to set up 24GW of fully integrated capacity.

In 2021 there were two PLI scheme announcements aimed at catalyzing the EV local supply chain. A $3.5 billion scheme for the automotive industry also covers EV manufacturers focused on domestic production of battery and fuel-cell electric vehicles. Local manufacturing of EVs is also set to advance from the $2.3 billion PLI scheme aimed at establishing 50GWh of advanced cell manufacturing set up.

The PLI scheme for boosting green hydrogen in India has been allocated $2.4 billion by the national government, of which $1.6 billion aims to incentivize green hydrogen production and another $0.6 billion for electrolyzer manufacturing. Incentives will be disbursed to the lowest bidders for an aggregated green hydrogen demand, with the production route also covering biomass pathways. Eligible bidders for setting up local electrolyzer manufacturing will be assessed on selection parameters such as local-value addition, performance of electrolyzers and bid capacity.

2.2. Scenarios and outlooks at BloombergNEF

This research forms part of the library of energy transition scenarios at BNEF.

The core scenario used in BNEF research is our Economic Transition Scenario (ETS). This scenario employs a combination of near-term market analysis, least-cost modeling, consumer uptake and trend-based analysis to describe the deployment and diffusion of commercially available technologies in the absence of new policy regimes and uncover the underlying economic fundamentals of the energy transition.

In addition to the ETS, BNEF develops a range of global, sector-based, and country-level scenarios. This includes a set of normative climate scenarios that investigate pathways to reduce greenhouse gas emissions in line with the Paris Climate Agreement.

5 See India’s $2.4 Billion Solar Manufacturing Tender Decoded (web | terminal)
6 See India EV Production Incentives to Aid Tata and TVS (web | terminal)
Scenarios are future-focused simulations combining several uncertain parameters into an internally consistent narrative. They are predominantly used for medium-to-long-term investigative studies and may also include sensitivities to key variables. Scenarios differ from forecasts, which are usually shorter-term predictions of what we think will happen.

Scenarios in the New Energy Outlook

This report builds and expands on results from our *New Energy Outlook*, published in November 2022. The report presents country-level harmonized net-zero pathways for nine economies that show what a credible pathway to net zero could look like.

The *New Energy Outlook* (NEO) is BloombergNEF’s long-term scenario analysis on the future of the energy economy covering electricity, industry, buildings and transport and the key drivers shaping these sectors until 2050. As part of NEO, we use our in-house NEFM-2 power model to determine a least-cost system that can reliably meet electricity demand throughout the year.

The *New Energy Outlook 2022* covers two main scenarios:

- **The Economic Transition Scenario** (ETS) is our baseline assessment of how the energy sector might evolve from today as a result of cost-based technology changes. The ETS combines near-term market activity, the uptake of new consumer-facing energy products, least-cost system modelling and trend-based analysis to describe the deployment and diffusion of commercially available technologies. Technology transition only occurs in this scenario where it lowers system cost or offers an attractive pay-back proposition for consumers. Population and economic activity across the world continue to expand in line with historic trends and demographic shifts, taking into account changing demand.

- The ETS incorporates legislated and firm near-term policy, but does not assume either country-level, or corporate, long-run energy and climate objectives are met. In this way the ETS describes how the energy sector might evolve in the absence of further major climate policy intervention.

- Global greenhouse gas emissions under our NEO 2022 ETS are consistent with a global temperature rise of 2.6°C by 2050, with a 67% confidence interval.

- **The Net Zero Scenario** (NZS) describes an economics-led evolution of the energy economy to meet net-zero emission in 2050 with no overshoot or reliance on carbon removal technologies post-2050. We take a sector-led approach to decarbonization. Countries’ carbon budgets are largely determined by the sectoral make-up of their economies, and the expected growth in those sectors. Neither historical responsibility nor availability of finance are taken into consideration.

- The NZS combines faster and greater deployment of renewables, nuclear and other low-carbon dispatchable technologies in power with the uptake of cleaner fuels in end-use sectors, most notably hydrogen and bioenergy. Carbon capture and storage (CCS) emerges toward the end of the decade, allowing fossil fuels to continue to be used in electricity generation and industry. Additionally, accelerated electrification and increased recycled materials production further contribute to emissions reductions. The NZS is therefore not an extension of the ETS, it describes a fundamentally different energy economy.

- Global greenhouse gas emissions under our NEO 2022 NZS are consistent with a global temperature rise of 1.77°C by 2050, with a 67% confidence interval.
Section 3. Emissions and abatement

In the NZS, India’s emissions drop and the country reaches net zero by mid-century, compared to ETS where India sees a 21% rise in emissions from 2021 levels. The power sector contributes the most and the fastest to emission reductions under both scenarios. Clean power and electrification are the main drivers behind this. Hydrogen and CCS play important roles in hard-to-abate sectors.

3.1. Emissions

A plausible net-zero scenario consistent with 1.77C of warming

In our Net Zero Scenario (NZS), India reaches net-zero emissions in 2050, consistent with the Paris Agreement goal to keep temperature increases well below 2C compared to pre-industrial levels. This contrasts with the Economic Transition Scenario (ETS), in which India’s emissions increase is consistent with a 2.6C warming trajectory. India’s energy-related emissions peak in 2037 at 3,478MtCO2 in the ETS, and at 2,643MtCO2 in 2024 under the NZS.

Our modeling shows that while 1.5C looks increasingly out of reach, there are still plausible pathways to stay within 1.77C of warming, with a 67% confidence interval – the outcome of our NZS. Even then, a revolution will be needed in the energy sector to increase momentum and accelerate emissions reductions.

In the NZS, the power sector rapidly ramps up renewables to displace carbon intensive coal generation. Carbon capture and storage (CCS) and hydrogen also begin to scale this side of 2030, albeit at a slower rate.

Figure 15: Emissions by sector and peak year, India

Source: BloombergNEF. Note: Labels show year of peak emissions. ‘Other’ includes agriculture, forestry, fishing, energy industry own energy consumption, and other final energy consumption no further specified.
Emissions in the NZS need to decline much faster than in the ETS. Power sector emissions decline due to the increasing displacement of fossil-fuel generators by wind and solar capacity and peaks in 2024 in the NZS. Transport sector emissions peak in 2028 and fall quickly particularly due to the electrification of road transport.

Industrial sector emissions in India are the last to peak in 2031 and then begin a steep decline in the mid-2030s as the use of hydrogen and carbon capture increase to decarbonize steel, cement and petrochemical production. Building sector emissions, already lower than industrial and transport emissions, decline relatively slowly from their peak. In the ETS, emissions from all sectors except industry and buildings peak before 2050 and are on a declining path, albeit at a slower pace than in the NZS.

A sector-led approach to net-zero modeling

BNEF defines the pace of emissions reductions by economic sector, not by country. Sector budgets account for historical emissions trends, projected emissions growth and available abatement options. Our bottom-up sector modeling relies on commercially available technologies today, and those that have shown technology readiness and a conceptual pathway to scale. Countries’ carbon budgets are largely determined by the sectoral make-up of their economies, expected growth in those sectors, and their relative progress under the Economic Transition Scenario. Neither historical ‘responsibility’ nor availability of finance are taken into consideration. For more, see methodology section in New Energy Outlook 2022 (web | terminal).

3.2. Abatement

In order to illustrate the scale of the abatement required under the ETS and NZS, BNEF has constructed a ‘no transition’ counterfactual emissions profile in which no further actions are taken to decarbonize the power sector or road transport. It holds the current fuel mix constant, with emissions growing proportionally to energy demand expected in the ETS and NZS.

Economic Transition Scenario

The combination of near-term policies and an economics-led pathway in the Economic Transition Scenario leads to a significant carbon emissions reduction. Carbon emissions fall from their peak in 2037 at 3,478MtCO2 to 3,135MtCO2 in 2050. Emissions from coal and oil combustion peak in 2037 and 2039, respectively. Coal emissions fall by 12% by 2050 from their peak. Emissions from gas consumption do not peak until 2050 under the ETS.
Figure 16: India’s carbon emissions reductions from fuel combustion, Economic Transition Scenario versus no transition scenario

Against the ‘no transition’ counterfactual, switching power generation from fossil fuels to clean power is the single biggest contributor to India’s emissions reductions, accounting for 91% of all emissions abated over 2022-50 in ETS. This includes displacing existing unabated fossil fuel generation with low-carbon technologies such as wind and solar and competing on economic grounds for new power demand. The second-biggest category is electrification in direct energy use, especially in road transport, using increasingly lower-carbon electricity. This accounts for 8% of emissions reductions over the period. The remaining 1% is accounted for by fuel-switching in direct energy use.

Carbon emissions reduction in the ETS falls significantly short of delivering an emissions reduction pathway consistent with a 1.5C trajectory under the scenario, landing instead on a carbon budget consistent with a 2.6C global temperature rise by 2050.
Net Zero Scenario

Getting to net zero by mid-century requires a complete phase-out of unabated fossil fuel use in India’s energy sector.

Figure 17: India’s carbon emissions reductions from fuel combustion, Net Zero Scenario versus no transition scenario

Source: BloombergNEF. Note: The ‘no transition’ scenario is a hypothetical counterfactual that represents a world in which no further actions are taken in the power and road transport sector to reduce carbon emissions, keeping the current fuel mix constant at 2021 levels and growing proportionally under the same ETS demand forecast. In industries, most sectors continue to use the same fuel mix through 2050 in the no transition scenario. NZS – Net Zero Scenario, CCS – Carbon capture and storage.

Similar to the ETS, switching power generation from fossil fuels to wind and solar is the single biggest contributor to India’s emissions reduction in the NZS, accounting for 62% of all emissions abated over 2022-50. Electrification in direct energy use is again the second-biggest contributor, accounting for 14% of total emissions abated over the period. Bioenergy use outside the power sector and hydrogen together contribute a sizable 10% of emissions abatement.

CCS gains in importance from the 2030s as hard-to-abate sectors are being tackled and any remaining unabated fossil fuel plants are either replaced or retrofitted. CCS accounts for 10% of Indian emissions abated between 2022 and 2050 under the NZS. Carbon removals only account for 1% of emissions and are mainly needed to abate residual emissions from incomplete capture in CCS applications.

Our NZS is a pathway consistent with a 1.77°C global temperature rise by 2050 (with a 67% likelihood) with no overshoot or reliance on net-negative emissions technologies post-2050. This trajectory gives a 33% chance of staying within 1.5°C, but a better than 67% chance of staying below 2°C.
Emissions trajectory versus national plans

In August 2022, India’s national government lodged an updated Nationally Determined Contribution (NDC) report with the United Nations Framework Convention on Climate Change (UNFCCC) secretariat. The updated NDC committed India to reducing greenhouse gas emissions intensity of GDP by 45% below 2005 levels by 2030 – a 10-12 percentage point increase in ambition on the previous target.

Our modeling suggests India is on path to achieve this target. Emissions in our base case rises by 22% between 2019 and 2030 which is less than the 31% increase that India has committed to in its revised NDC (Figure 18). India’s extraordinary success, primarily in its transition to renewables has been largely supported by current policy directions taken by the government, such as conducting large-scale renewable auctions and also by declining costs of renewable energy technologies.

India will require even further concerted policy actions to accelerate the transition beyond policies that are in place today for it to decarbonize along the 1.77°C pathway charted under the NZS. The power and transport sector offers the biggest near-term opportunities, with proven technologies already under commercial adoption. The net zero transition presents opportunities for investment, economic growth, local manufacturing and employment generation. It also presents a path to greater energy security and independence for the country. India’s leadership, experience, policies and pathways can offer important lessons for other countries too.

Figure 18: India’s emissions trajectory by scenario

Source: BloombergNEF. Greenhouse-gas data - World Resources Institute CAIT. NDCs - UNFCCC. GDP data - IMF. Note: Applies to India's economy-wide, unconditional, greenhouse-gas targets for 2030. For targets based on emissions or carbon intensity, IMF GDP projections are used to estimate emissions if NDC is met. NDC – Nationally Determined Contributions, NZS – Net Zero Scenario, ETS – Economic Transition Scenario.
Section 4. Energy trends

In both scenarios, coal is replaced by increasingly cheaper renewable energy. Electrification is the dominant route for industrial, transport and building sectors, but the rest of the energy mix differs by sector. Hydrogen makes some inroads in industrial and commercial transport sectors, while bioenergy also plays an important role in aviation and shipping.

4.1. Primary energy demand

Domestic fossil fuel use in India is yet to peak. Under the NZS, India’s primary energy consumption from coal in 2050 is 8,506PJ, nearly a third of that in the ETS. This is due to the important role that unabated coal power plays in the ETS, where alternative pathways such as use of CCS or hydrogen are economically unviable in the near term. India’s gas consumption in the NZS is only a third (or 642PJ) of the consumption in the ETS in 2050. The drop in oil consumption is far more dramatic, with the NZS level at 1,429PJ, nearly a tenth of that under the ETS. The role of oil diminishes over time with the electrification of the transport sector and the displacement of fossil fuels by clean energy technologies.

Figure 19: India’s primary energy consumption by fuel

Source: BloombergNEF. Note: ‘Other renewables’ includes hydro and geothermal.
4.2. Final energy demand

India’s total final energy demand reaches 46,655PJ in 2050 under the ETS, up 81% from 25,781PJ in 2021. In the NZS, final energy demand increases by 41% during the same period, reaching 36,300PJ in 2050.

Lower overall final energy demand under the NZS compared to the ETS is a result of greater electrification, which is more efficient than fossil fuel combustion. EVs, for example, use one-third of the energy that internal combustion engine vehicles use due to avoided losses from final to useful energy conversion.

Clean hydrogen development is still nascent and largely limited to feasibility studies and proposed pilot projects. Our modeling suggests that clean hydrogen can play a growing role in India’s final energy demand toward 2030 in the NZS, particularly in hard-to-abate sectors of the economy, such as steel (see Section 6).

Figure 20: India’s total final energy demand by fuel

In the NZS, electricity use more than triples from 2021 levels to supply 45% (16,194PJ) of total final energy in 2050 compared to just 29% in the ETS, due to greater electrification. Decarbonizing India’s power system and a drive for electrification where it is possible will therefore be critical for reaching the country’s net-zero ambitions.
4.3. Electricity demand

The Covid-19 pandemic caused India’s power demand to fall by 4% in 2020 compared to 2019. However, in the long-term, economic growth and an expanding population are expected to lead to a rise in gross electricity demand. Between 2021 and 2050, India’s population is expected to grow by 18% and reach 1.6 billion, according to World Bank projections. The country’s GDP reaches $17 trillion by 2050, nearly fivefold the $3.3 trillion in 2021 (Figure 22). In the ETS, there is a decoupling between electricity demand and the GDP in India, whereas in the NZS, the two follow each other closely.

Figure 22: Macroeconomics and electricity demand trends for India

EVs and clean hydrogen are major electricity consumers under NZS

Reaching net-zero emissions by mid-century leads to a significant rise in India’s electricity consumption. The ETS sees power consumption of 3,723TWh in India in 2050 – nearly three times of that in 2021. This rises to 7,100TWh in the NZS, more than fivefold of 2021’s consumption. The increase is driven largely by electrification of road transport and demand from electrolyzers to produce low-carbon hydrogen, both of which see significantly higher power consumption compared to the ETS. Electricity consumption from transport in 2050 is 70% higher in the NZS compared to the ETS. Power demand from hydrogen, which is insignificant in the ETS, is close to 2,600TWh in the NZS by mid-century as we assume that nearly all of the hydrogen produced is via electrolysis.

Figure 23: Power consumption by sector in India

Under the NZS, power demand from buildings is 1,699TWh in 2050 – around 5% higher compared to the ETS. The increasing use of electrical stoves and the deployment of heat pumps for heating in places that need them contribute to rising electricity demand in the NZS. But the rise in overall energy efficiency of appliances also helps offset some of that growth in electricity demand in this scenario.
Section 5. Power sector

The power sector contributes the most to India's carbon emissions today. In the NZS, unabated coal generation is replaced by cheaper wind and solar this decade. Together with other low-carbon technologies such as nuclear and CCS, they dominate investment in the sector to 2050. New wind and solar additions peak in the 2040s. Further, the electric power system also needs to ensure enough firm capacity to provide system adequacy, critical back-up and flexibility.

5.1. Installed capacity

India’s power capacity including batteries expands nearly fivefold to 2,982GW in 2050 under the ETS, up from 476GW\(^7\) in 2021 – adding an average of 95GW gross capacity annually between 2022 and 2050. In comparison, the expansion under the NZS is nearly sevenfold to 4,227GW with an average annual gross addition of 148GW.

In the BNEF analysis, India, alongside Indonesia, China and Japan continues to build coal-fired plants on economic grounds (without CCS) in our base case ETS. In total, 175GW new build coal capacity is added by 2050 to the current 262GW. Due to the overall system growth the share of coal in installed capacity declines to 13% in 2050, from the current 55%. Some 30% of the new build is to replace existing coal plants by 2030. 52GW of new build coal capacity is to be added by 2030, of which about 26GW are already under-construction. The retirement of the existing fleet and the need to maintain a firm capacity margin in the grid leads to an additional new build of 64GW during 2031-40 and 59GW during 2041-50. In general, coal plants with low transportation costs can compete with renewables today on an economic basis\(^8\). Therefore, most new power plants in this scenario are built next to coal mines. For more analysis on the role of coal in the New Energy Outlook, see New Energy Outlook: Coal (web | terminal)

Under the NZS, unabated\(^9\) coal and gas capacities are largely retired, with only 5GW and 1GW remaining in the grid by 2050, respectively. Nuclear capacity reaches 97GW in the same period, whereas only 45GW is needed under ETS. The share of non-fossil-fuel sources\(^10\) in the capacity mix under NZS increases to 89% in 2050 – 10 percentage points higher than the ETS, compared to 35% in 2021.

\(^{7}\) Includes 73GW of captive thermal capacity

\(^{8}\) Transport costs make up more than a third of the total landed fuel costs of an average existing non-pithead power plant in India. See Indian Coal Prices Rise, Remain Half of Global Rates (web | terminal)

\(^{9}\) Unabated coal and gas capacities refers to power plants without carbon capture

\(^{10}\) Includes batteries and pumped hydro
Figure 24: Installed generation capacity and batteries in India by technology/fuel

5.2. Renewable capacity

India has already begun its low-carbon power transition. Falling costs for renewables, along with state and national policy support, have aided the construction of 42GW of utility-scale wind and 68GW of utility-scale solar by 2022.

Under the ETS, total solar and wind capacity rises to 1,692GW by 2050, driven primarily by their relative economic competitiveness. Solar makes up most of this capacity growth with 977GW of utility-scale PV and 125GW of small-scale PV operational in 2050. Onshore wind capacity grows to 556GW in 2050 and an additional 35GW of offshore wind is also installed. Overall, under the ETS, wind and solar represent 57% of total capacity installed in India in 2050.

Achieving net zero by 2050, however, will require even more wind and solar capacity. In the NZS, wind and solar account for nearly 3TW of installed capacity by mid-century, or 1.8 times that installed in the ETS. Utility-scale solar experiences the largest growth, with 1,789GW of capacity operating in 2050. Installed onshore wind capacity rises to 1,047GW, with 37GW of offshore wind in 2050.

Our modeling shows an opportunity for offshore wind closer to 2030 in India. The much higher levelized cost of electricity, or LCOE, for offshore wind compared to onshore wind and solar in the...
long term is the main reason behind the slow uptake of offshore wind in India. Onshore wind and PV have already achieved tipping point 1 – meaning it is already cheaper to build a new PV or a wind power plant, than building a new coal or gas power plant. LCOE of PV and onshore wind fall below short-run marginal costs of existing coal plants in the mid-2030s.

Despite the higher capacity factor and more stable generation profile of offshore wind, the cost of onshore wind is falling faster. Offshore wind may play a larger role if land and grid are constrained, which were not incorporated into our cost-based modeling. Overall, wind and solar represent 71% of total capacity installed in India by mid-century.

Wind and solar represent 71% of total capacity by 2050 under the NZS.

Source: BloombergNEF.

Figure 25: PV and wind LCOE vs coal LCOE (Tipping Point 1 – new renewables vs new coal plants)

Figure 26: PV and wind LCOE vs short-run marginal cost of existing coal (Tipping Point 2 – new renewables vs existing coal plants)

Figure 27: Average annual gross capacity additions for wind and solar in India

Source: BloombergNEF. Note: PV – Photovoltaic.

11 For the latest LCOE comparison, see LCOE 1H 2023 (web | terminal)
5.3. Generation

Future generation mix is built around renewables

Both scenarios show a rapid increase in India’s power generation and a fundamental shift in its power mix. Total generation in India will triple from 1,718 TWh today to 5,148 TWh by 2050 under the ETS. By comparison, total generation will increase by 365%, to 7,994 TWh by 2050, under the NZS. Achieving net zero by 2050 means the NZS is not merely an evolution of the ETS – it will have to function like a completely different power system (Figure 28).

Figure 28: Electricity generation in India by technology/fuel

Wind and solar rapidly scale from 8% of total generation in 2021 to 67% by mid-century under the ETS and 80% under the NZS. Under the ETS, solar accounts for 32% of generation compared to 36% for wind. In the NZS, wind accounts for 44% of all generation in 2050, compared to 36% for solar.

Coal accounts for three-fourths of India’s electricity generation today. In both scenarios, existing sub-critical and some supercritical coal projects, beset with lower operational flexibility, will struggle to compete with new renewable energy generators. Unabated coal’s share of the generation mix drops to 18% by 2050 under the ETS, and 0.1% under the NZS.

Gas continues to struggle to compete with other sources, specifically as cheaper renewables supply more bulk generation for the Indian power system. Instead, gas moves from baseload to a peaking role – supplying high value, low volume electricity to the power system at times of need. By 2050, unabated gas accounts for only 1% of all generation under the ETS and 0.1% under the NZS, down from 4% today.

Coal and gas paired with carbon capture and storage play a role only in the NZS – accounting for 4% and 1% of total generation in 2050, respectively.
Driven by higher penetration of renewables, the emission intensity of the grid reduces dramatically, dropping to 191gCO2/kWh in 2050 under the ETS, from 807gCO2/kWh in 2021. Under the NZS, it drops further to near zero, reaching 1.4gCO2/kWh by mid-century.

Figure 30: India’s emission intensity of electricity generation under both scenarios

Source: BloombergNEF

Note: Includes electricity generation for hydrogen production. ‘Other renewables’ includes all other non-combustible renewable energy in electricity generation, including hydro, geothermal and solar thermal. CCS – Carbon capture and storage.
5.4. **Dispatchable capacity**

New flexible capacity from batteries and hydrogen

As India transitions away from fossil fuels and toward variable renewables, its power system will require additional dispatchable capacity as back up and balancing.

In the ETS, total dispatchable capacity increases by 30% from 377GW to 489GW between 2021 and 2030 with 74% of it contributed by capacity additions of 38GW from coal, 25GW from hydro and 20GW from batteries. Between 2031 and 2050, total dispatchable capacity continues to increase driven by rapid expansion of pumped hydro and batteries that rise to 495GW.

Under the NZS, total dispatchable capacity increases even more – 37% to 515GW between 2021 and 2030 and nearly 138% to 1,227GW from 2031 to 2050. Unabated coal plants are retired in the NZS, with only 5GW remaining in the power system by mid-century. Additional hydrogen capacity expansion along with batteries and some pumped hydro provide new forms of flexibility in the system in the face of accelerated retirement of coal generation. The capacity of utility-scale batteries deployed under the NZS by 2050 at 401GW is smaller compared to the ETS at 473GW. This is driven by greater flexibility on the demand-side due to the growing use of electric vehicles and hydrogen electrolyzers in the NZS compared to the ETS.

In addition, 106GW of hydrogen-fired generation capacity is installed by 2050 compared to none in the ETS. India also adds a relatively large amount of gas peakers to help manage peak summer demand during critical hours. Under the NZS, 114GW and 54GW of CCS-paired coal and gas plants are installed by 2050, with an additional 44GW of CCS-paired peaker plants installed.

Figure 31: India’s dispatchable capacity by scenario

Economic Transition Scenario

Net Zero Scenario

Source: BloombergNEF. Note: ‘Other’ includes geothermal and interconnectors. CCS – Carbon capture and storage, CCGT – Combined cycle gas turbine
Thermal capacity is still necessary to get to net zero

Under the NZS, total thermal firm capacity (including nuclear) – that is, fully dispatchable capacity – doubles from today’s 315GW to 661GW in 2050. Oil-fired capacity is completely phased out in mid-2030s. Near complete retirement of unabated coal plants is offset by an increase in CCS-paired coal and gas capacities, with a cumulative installed capacity of 114GW and 54GW, respectively, in 2050.

India’s coal fleet and CCS conversions

India has some of the youngest coal fleet in the world, with some 80% of coal plants aged 20 years or less. The share of coal plants younger than 20 years is similarly high in China and Indonesia, while it is as low as 11% in the US and about 25% in Poland or Germany.

Although BNEF did not explicitly model CCS conversions for coal or gas capacity (the cost can be significantly lower than a new plant, but also higher due to local factors), it is reasonable to assume that in markets like India a high proportion of new coal with CCS capacity in our modeling will be conversions of existing plants, where possible.

In addition, 106GW of clean hydrogen-fired capacity is installed. In the ETS, hydrogen and CCS-paired coal and gas capacity are always more expensive than the incumbent alternatives, and so see no development out to 2050.

In the NZS, load factors for thermal fleets decline dramatically between 2021 and 2050. During this period, load factors for unabated gas fall from 23% to 1%. In the same period, unabated coal load factors drop from 57% to 13%. The CCS-paired counterparts have higher load factors until mid-2030s but from then on begin a steady decline until 2050. The load factor for hydrogen-fired capacity rises to 11% by 2050 as it increasingly provides critical backup to renewables during periods of low supply.

![Figure 32: Firm thermal capacity in India, Net Zero Scenario](image)

![Figure 33: Load factors for firm capacity in India, Net Zero Scenario](image)

Source: BloombergNEF. Note: CCS – Carbon capture and storage, CCGT – Combined cycle gas turbine.
5.5. **Flexibility**

New sources of flexibility are not just confined to the supply-side. As India’s power system marches rapidly toward decarbonization, dominated by variable renewables, the importance of demand-side flexibility also increases as new forms of demand emerge. Particularly in the NZS, consumption patterns change to take advantage of low-cost electricity available during periods of high renewable output. A key example of this is the emergence of flexible demand from electrolysers and electric vehicles.

In the NZS, flexible electrolyzer demand rises from virtually nothing in 2021 to nearly 2,385 TWh by mid-century to produce clean hydrogen. In our modeling we assume electrolysers are fully flexible and able to produce during low-cost hours. This introduces a large new source of demand-side flexibility. Low-carbon hydrogen can aid the decarbonization of hard-to-abate sectors like the steel industry and shipping, as well as provide some firming capacity to complement variable renewables. Similarly, as the road sector decarbonizes, we assume a share of charging will be able to respond flexibly to system needs, especially for home charging during night hours. Flexible demand from electric vehicles rises to 362 TWh by 2050 with the increasing electrification of India’s transport sector – this means by 2050 there are more batteries in vehicles connected to the grid in India than utility and behind-the-meter batteries.

![Flexible demand in India, Net Zero Scenario](image)

Source: BloombergNEF. Note: EV demand flexibility varies by user group and charging patterns.

![India's flexible non-thermal supply, Net Zero Scenario](image)

Source: BloombergNEF. Note: Battery storage includes utility and behind-the-meter installations.

5.6. **Power grids**

As more renewables are added to the Indian grid, new investment will be needed to support the country’s transition. India’s power grid undergoes a rapid transformation under both the ETS and NZS as the power system shifts from large, centralized power plants to a more decentralized system. Under the ETS, $1.3 trillion is invested in grids up to 2050, of which $804 billion is allocated toward system reinforcement and asset replacement, and $513 billion to new
connections. Achieving net zero in India calls for $2.1 trillion of grid investment between 2022 and 2050, of which $1.2 trillion is spent to sustain the existing grid and replace assets, and $897 billion to expand the grid for new electricity consumption.\footnote{New Energy Outlook: Grids (web | terminal)}

In the NZS, the length of the grid doubles to over 20 million kilometers between 2022 and 2050. Around 5,000 kilometers of submarine cables are installed after 2027 to support the commissioning of offshore wind capacity. India’s grid development is shaped by demand growth along with the addition of renewables.

Annual grid investment levels off through the 2030s as new renewable energy connections stabilize. Grid investment averages $100 billion per year in the 2040s as ageing infrastructure and electrification starts warranting more investment. Accelerated electric vehicle deployment also drives growth in spending, most notably after 2030. The number of EV connections in our forecast grows from less than 1 million in 2030 to over 16 million in 2040, and then nearly 40 million by 2050. Further, India’s hydrogen economy gains appreciable scale. By 2050, electrolyzers contribute 545GW to peak load, which exceeds India’s peak demand today but represents only 14% of national peak demand in 2050.

High-voltage direct current (HVDC) transmission in India grows to 30,520 kilometers by 2050 while ultra high-voltage (UHV) rises to 62,710 kilometers. Historically, India’s electricity grid was broken into several asynchronous grids. Synchronization of these grids in 2013 ended an era of regional self-sufficiency in favor of a national grid where electricity can easily flow between regions. India will need to invest in expanding regional interconnectors to connect generation with demand across regions.

Figure 36: India’s grid investment by voltage class, Net Zero Scenario

Figure 37: India’s grid investment by driver, Net Zero Scenario

Source: BloombergNEF. Note: ETS – Economic Transition Scenario.
Section 6. Hydrogen and CCS

In the NZS, hydrogen is crucial for India to cut emissions in hard-to-abate sectors, like steel and shipping. Its consumption rises sharply after 2030, when hydrogen from clean power gets cheaper and is more available. CCS also plays an important role, with a rapid ramp-up in our modeling from the 2030s to decarbonize industry, in particular cement, petrochemical and steel production.

6.1. Hydrogen

Hydrogen helps decarbonize shipping and steel but remains niche elsewhere

India’s hydrogen use reaches 53Mt of H2 in 2050, nearly 13 times of that in 2021 under the NZS and about 10% of global demand. Hydrogen plays a strategic role in decarbonizing steel making and shipping, where it meets 64-76% of final energy demand in 2050 (Figure 38). The availability of iron ore should not arise as a concern given that India is rich in high-grade iron ore deposits. Under the NZS, hydrogen-fired direct reduction furnaces produce more than half of all steel output in 2050. In fuel refining, hydrogen can serve both as a feedstock and process fuel.

However, hydrogen is less competitive where alternatives already exist or are emerging. This includes the power sector, buildings and industrial sectors outside of steel, such as petrochemicals (excluding use as feedstock) and cement. Hydrogen plays a limited role in heavy road transport. In rail, it can help to decarbonize operations on tracks that cannot be electrified.

Figure 38: Share of hydrogen in final energy consumption in India in 2050, Net Zero Scenario

Figure 39: India’s hydrogen consumption, Net Zero Scenario

Source: BloombergNEF. Note: ‘Energy industry’ includes legacy uses (eg, as feedstock for ammonia and methanol production or in oil refining) as well as own use for energy producing industries, such as process heating, lighting, and equipment operations. Commercial b. – Commercial buildings, Residential b. – Residential buildings.
Hydrogen produced in India in our modeling is predominantly from domestic grid-connected electrolyzers using mostly low-carbon energy sources.13 As the grid decarbonizes, the carbon-intensity of the energy mix during hours of operation drops fast and reaches near-zero by 2045. Solar and wind generation represents over 91% of the electricity consumed to produce hydrogen in India in 2050 (Figure 41). Around 1% of the electricity generated to produce hydrogen will come from coal paired with CCS, with the rest from nuclear.

Dedicated off-grid electrolyzers may also play a role in the near- to medium-term, but are not covered in our modeling. These would require oversizing of generation capacity or under-sizing of electrolyzer capacity.14

Existing gray hydrogen production is phased out by 2050 as India reaches net zero.

Figure 40: India’s hydrogen production by type, Net Zero Scenario

Figure 41: Share of fuel mix in India’s hydrogen production, Net Zero Scenario

Source: BloombergNEF

Source: BloombergNEF. Note: CCS – Carbon capture and storage.

13 Includes solar, wind, nuclear, bioenergy and other renewables, such as hydro and geothermal sources.

14 BNEF has developed a tool that determines the optimal off-grid renewable power solution for a new electrolysis project used to produce green hydrogen. See Hydrogen Electrolyzer Optimization Model (H2EOM) (web | terminal)
6.2. CCS

CCS spurs decarbonization in industry, with some uptake in clean hydrogen and electricity production

Carbon capture and storage (CCS) for emissions abatement is limited to use in the power sector and domestic industry in our modeling. In 2050, CCS is responsible for 64% of emissions abatement in cement, 23% in petrochemicals and 13% in steel production. In hydrogen production, it accounts for 2% of emissions reductions through use of CCS paired power plants. In the power sector, fossil fuel plants equipped with CCS abate about 7% of all emissions in 2050.

The annual rate of emissions captured by CCS grows from very low levels in 2022 to 221MtCO2 in 2030, 465MtCO2 in 2040, and 664MtCO2 in 2050. Cumulatively, around 12GtCO2 are captured by CCS between 2022 and 2050, with 61% originating in power, 18% in cement, 16% in steel manufacturing and the rest in other sectors.
CCS yields the greatest emissions reductions when it captures CO2 from carbon intensive processes, such as in coal-fired power plants or industrial furnaces. Coal in particular has a high emissions intensity, releasing around 69% more CO2 per unit of energy than natural gas. In the NZS, around 87% of India’s total cumulative captured emissions are from processes combusting coal, with 7% each from gas and oil. We assume in our modeling that CCS systems will be able to capture 90% of emissions, irrespective of the fuel or application.

Figure 44: Cumulative CO2 emissions captured by CCS in India by fuel type, NZS

Source: BloombergNEF
Section 7. End-use sectors

In the NZS, end-use sectors experience very different emission reduction pathways based on technology readiness and abatement options. Hydrogen, electrification and CCS are the three most important solutions for industry decarbonization. The road transport sector relies more on electrification, but bioenergy and hydrogen are needed for some heavy-duty transport, shipping and aviation. Electrification contributes the most to decarbonization in buildings.

7.1. Industry

India is a relatively small producer of industrial materials today but will be one of the fastest growing markets over the next three decades. Production of steel, aluminum and petrochemicals all grow exponentially in our scenarios as India’s economy grows.

A large portion of India’s steel supply currently comes from recycled materials. It is one of the largest steel scrap importers, though new export controls on scrap metal in the EU could soon change this. It has very little secondary production in plastics, aluminum or cement but should make rapid progress in plastic and aluminum recycling from 2030 onward.

India’s production of industrial materials is expected to scale up to mid-century forced by a growing economy, with India’s share in global steel production tripling to 18% by 2050 from current 6%. Similarly, cement production doubles in the same period and aluminum triples.

India has the potential to become a large low-carbon materials producer, with access to abundant clean energy, high quality iron ore, low-cost hydrogen and a small base of existing polluting assets. However, it needs to commit to ‘building clean’ from now on to achieve this.

Figure 45: Indian share in global production of industrial materials

Source: BloombergNEF.
India has a steep hill to climb in industrial decarbonization. In a business-as-usual scenario, its emissions from material production would more than double. It also has very little existing infrastructure for either hydrogen or CCS.

Figure 46: India’s final energy consumption by industry subsector, Net Zero Scenario

In the NZS, the use of bioenergy increases rapidly in the aluminum sector by 2050 and accounts for 41% of final energy demand. In the steel sector, hydrogen use expands to reach 64% of the final energy demand in 2050. Under the ETS, there is almost no emissions abatement from industry in India. Most materials will require policy support, a green premium, or a technology breakthrough to decarbonize.

Under NZS, most of India’s industrial decarbonization comes from hydrogen thanks to the makeup of its steel sector. CCS is also a large contributor, mostly for the cement industry.

Source: BloombergNEF. Note: y-axes differ in scale. Note: ETS – Economic Transition Scenario.

Industry sector modeling in NEO 2022

Our industry modeling covers steel, aluminum, cement, petrochemicals and other industry (aggregated from pulp and paper, other non-ferrous metals, other non-metallic minerals and other industries).

We have switched several sectors from trend-based models to least-cost models in NEO 2022. For steel, aluminum and cement we use a proprietary least-cost optimization model that determines the cheapest combination of new-build and retrofit capacity to meet future demand, as well as primary and secondary demand.

For steel, the model uses levelized cost forecasts for blast furnace - basic oxygen furnace (BF-BOF), direct reduction - electric arc furnace (DR-EAF) and scrap EAF (with both conventional and clean fuels; the net-zero modeling also accounts for molten oxide electrolysis). For aluminum, the model uses levelized cost forecasts for alumina, smelting and recycling (with both conventional and clean fuels).
Aluminum and steel

Aluminum and steel have clear pathways to net-zero among the industrial sectors. In the aluminum sector, recycling aluminum is the best near-term step to reduce its emissions\(^\text{15}\); between 2022 and 2030, recycling accounts for nearly all of abated emissions, and by 2050, accounts for 50% of all abated emissions. Post-2030, bioenergy and electrification play a role in abatement, contributing to 22% and 16% of the sector’s emissions reductions.

Figure 47: End-use CO2 emissions abatement for aluminum in India, Net Zero Scenario

Figure 48: End-use CO2 emissions abatement for steelmaking in India, Net Zero Scenario

Source: BloombergNEF. Note: y-axes differ in scale. CCS – Carbon capture and storage, NZS – Net Zero Scenario.

India’s steel sector is unusual in having a very high proportion of direct-reduction electric arc furnace (DR-EAF) capacity. These plants currently use coal but could be switched to natural gas or hydrogen with some modifications. It will also see most of its production growth in the 2030s and 40s, when costs for emerging technologies should have fallen, thanks to deployment in other regions. This should make a better case for Indian companies to choose clean technologies for their new capacity.

\(^{15}\) Decarbonizing Aluminum: Technologies and Costs (web | terminal)
Under the ETS, emissions reduction in steel production in India is mainly through fuel switching. Under the NZS, India progresses through several stages. By 2040, unabated blast furnace-basic oxygen furnace (BF-BOF) plants are phased-out and unabated DR-EAF end by 2050. Until 2030, CCS accounts for the highest emission reductions, but only 17% between 2022 and 2050. Some 9% of all steel produced in India is from CCS paired plants by mid-century.

Hydrogen contributes the most to direct-use emissions abatement in the long-term for the steel sector and accounts for about 54% of all emissions reduced by 2050. Half of all steel produced in India uses hydrogen in 2050. Hydrogen also brings with it greater electrification, as hydrogen-fired DR furnaces are paired with clean-energy powered EAFs replacing basic oxygen furnaces.

Petrochemicals and cement

The petrochemicals sector is the most technically difficult to abate. A combination of electrification, CCS and bioenergy will be needed to decarbonize the sector by 2050. Direct-use electrification provides 62% of the cumulative abatement from 2022-50, but the contribution from CCS starts to grow post-2030. During that period, CCS contributes 17% of abatement, reducing emissions from fossil-fuel feedstocks like ethane and naphtha, as bio and recycled feedstocks are in limited supply.

16 New Energy Outlook: Industry (web | terminal)
In the NZS, CCS plays a significant role in decarbonizing cement, with the technology contributing 56% of abated emissions from the sector between 2022 and 2050. However, CCS only takes off post-2030. Over 2022-30, bioenergy and electrification together account for 99% of the sector’s abated direct-use emissions. Between 2031 and 2050, they account for 21% of emissions abated as the adoption of CCS accelerates\(^7\).

7.2. Transport

Under the NZS, India’s direct CO2 emissions from the transport sector are set to peak in 2028, on account of declining road transport emissions. The road segment is the largest emitter of CO2 within transport responsible for 89% of emissions in 2021. In shipping, emissions peak in 2027. In aviation, an increasing share for sustainable aviation fuels in final energy consumption sees direct CO2 emissions peak in 2031. In rail, emissions peak in 2025.
Figure 52: India’s final energy consumption by transport sub-sector, Net Zero Scenario

Source: BloombergNEF. Note: y-axes differ in scale. Bioenergy in Aviation is sustainable aviation fuel. ETS – Economic Transition Scenario.

Electrification of road transport is the key driver of decarbonization. Relative to the ETS, we see an even faster uptake of EVs in the NZS: by the late 2030s, 100% of all new passenger vehicle sales are EVs. By 2050, 100% of India’s vehicle fleet is electric. The higher cost of hydrogen fuel cell vehicles makes their uptake insignificant in India. See the India Road Transport Electrification Outlook 2022 (web | terminal)

Differences in BNEF’s Net Zero Scenarios for road transport

Our Net Zero Scenario for road transport in this report differs from that in our Electric Vehicle Outlook 2023 (EVO) (web | terminal). The EVO 2023 report charts a possible pathway to achieve a global vehicle fleet with no direct tailpipe CO2 emissions by 2050, but without meeting a carbon budget or global warming target. Its outcome is best understood as achieving a net-zero-capable fleet by 2050.

In contrast, in the New Energy Outlook, all sectors in the energy economy need to reach carbon neutrality and must collectively stay within a global temperature target. For the road transport sector, this means a 1.75C-aligned sectoral carbon budget, which requires an even more rapid switch to zero-emission vehicles, particularly in the late 2020s and early 2030s, as well as other measures. The result is a steeper uptake of annual EV sales across all road transport sub-sectors, impacting investment requirements, metals demand and other results. The transport sector results in the NEO NZS are best understood as a 1.75C-compliant fleet.

In Indian aviation, our Net Zero Scenario sees an expansion in the use of sustainable aviation fuels (SAF) in this decade. SAF is shown as ‘bioenergy’ in the chart below. By 2030, 20% of aviation fuel is met by SAF. By 2050, SAF grows to 68%. From 2035 onward, hydrogen aircraft emerge to serve on short- to medium-haul distance flights, reaching 31% of total fuel use in 2050. Electric planes are niche, only being used for commuter and regional flights. They represent 1% of fuel use in 2050. Across all segments, better airplane fuel efficiency and per-passenger efficiency contribute to a 31% efficiency improvement on final energy in comparison to the ETS, lowering overall fuel demand.
In shipping, the strongest lever to reach net-zero is greater efficiency, with operational and technical improvements accounting for 62% of emissions abatement in the sector in India by 2050. On the operations side, this includes more efficient vessels, vessel operation and better route optimization. The cargo industry is already relatively efficient, but there is room for improvement in the container sector. Lower travel speed (‘slow steaming’) can also improve fuel economy. On the technical side, hull retrofits, turbulence/drag reduction and better engine design are key measures to improve efficiency. But operational improvements are expected to deliver greater gains than technical enhancements.

The deployment of marine vessels running on LNG is negligible in India. Oil-fired vessels are replaced by ships using hydrogen-derived fuels like ammonia and methanol (labeled as ‘hydrogen’ in the chart above) as well as biofuels, which start to emerge from the mid-2030s. Hydrogen-derived fuels represent 76% of fuel use in Indian shipping by 2050, followed by 19% bioenergy and 5% electricity. Electric ships are mostly used to serve domestic routes and, to a lesser extent, spoke routes.

Electrification of rail is the most effective technology to reduce India’s emissions in this sector: 69% of abatement comes from electrifying diesel trains, resulting in 86% electricity use in final consumption in 2050. Hydrogen is used wherever building overhead lines is uneconomic; its fuel use is 14% in 2050.
7.3. Buildings

Final energy consumption in India’s buildings sector is expected to rise in the NZS from 8,177PJ in 2021 to 8,515PJ by mid-century thanks to the use of more efficient appliances and improved building design.

Under the NZS, energy consumption peaks in 2029 at 7,498PJ for residential buildings, whereas commercial buildings continue to increase energy consumption till 2050.

Figure 54: India’s final energy consumption by building sub-sector, Net Zero Scenario

Electrification is an essential route to decarbonize the buildings sector. Electricity consumption in buildings accounts for 65% of final energy in residential buildings and 93% of energy in commercial buildings in 2050.

The deployment of heat pumps where appropriate and electric cooking over bio-based fuels provides around 90% of buildings’ emissions abatement to 2050 in India. Improved building efficiency, both from new construction and higher renovation rates, provides 7%.

Electricity provides the largest share of final energy to the buildings sector in India, growing from 20% in 2021 to 30% by 2030, and then 72% by 2050. Bioenergy declines from 56% of final energy in 2021 to less than a quarter in 2050.
Figure 55: End-use CO2 emissions in buildings sub-sectors by type/technology, Net Zero Scenario

Residential

MtCO2

2000 2025 2050

Coal
Hydrogen
Efficiency/recycling

Gas
Other

Efficiency/recycling

No transition

NZS

Commercial

MtCO2

2000 2025 2050

Coal
Hydrogen
Efficiency/recycling

Gas
Other

Efficiency/recycling

No transition

NZS

Source: BloombergNEF. Note: NZS – Net Zero Scenario.
Section 8. Fuel demand

Coal demand needs to peak by the mid-2020s in order for India to get on track for net zero. By 2050, fossil fuels continue to be used in conjunction with CCS and as feedstock for industrial purposes. Hydrogen grows to become a major fuel after 2030 to decarbonize hard-to-abate sectors, such as steel.

Fossil fuel demand in India is yet to peak

Unabated fossil fuel use is expected to peak by the middle of this decade (Figure 56) in the NZS. From the peak, unabated fossil fuel consumption falls on average 18% per year until 2050 under the NZS. Clean energy processes and technologies rapidly displace carbon-intensive equivalents in our NZS, but fossil fuels still play a role in 2050 (albeit much diminished), either with emissions abatement (CCS) or as a feedstock.

CCS technologies without additional policy support are almost always more expensive than conventional processes, and so abated fossil fuel for energy use remains negligible in the ETS.

Figure 56: India’s fossil fuel use for energy use in Net Zero Scenario

Source: BloombergNEF. Note: Does not include use of fossil fuels as feedstock. Abated fossil fuel use is energy use where CO2 emissions from fuel combustion are captured with carbon capture and storage.

Coal consumption in 2050 drops to 42% of demand in 2021 under the NZS

In 2050, under the NZS, India consumes around 339Mt of coal (6,000kcal/kg), equivalent to 42% of demand in 2021 (Figure 57). Under the ETS, the consumption in 2050 is 970Mt of coal, equivalent to three times the consumption in the NZS.

India’s gas use declines by 66% from 2021 levels by 2050 in the NZS, while it remains relatively flat in the ETS. In the NZS, demand stands at just 18bcm by mid-century – a 70% decline from the peak in the early 2030s. India experiences no significant coal-to-gas switch in power in the NZS due to the relatively higher costs of gas compared with coal. In late 2020s, existing coal and gas capacities are retired or retrofitted with CCS.
Oil use declines the most of all energy commodities in the NZS, falling 83% from 2021 levels compared to an increase of 27% in the ETS. This is due to a complete phase-out in the transport sector and the availability of alternative clean technologies, like hydrogen, in the NZS.

By 2050, India’s domestic demand for hydrogen increases nearly 13 times to 53Mt of H₂ (140MJ/kg) under the NZS. Consumption rises rapidly during the last two decades in the scenario to meet the carbon constraint to approximate net zero emissions. In the ETS, where the relative economic competitiveness of technologies is the primary driver for adoption, hydrogen demand remains flats through 2050 as there are no additional applications on economic grounds other than existing legacy applications.

Figure 57: Fuel use in India by sector, Net Zero Scenario

Source: BloombergNEF. Note: Historical and current hydrogen demand is estimated based on petrochemical feedstock production. ETS – Economic Transition Scenario
Section 9. Investment

Large investments in energy infrastructure are needed in both the Economic Transition Scenario and Net Zero Scenario. The total investment opportunity in India over the next three decades is around $7.6 trillion in the ETS, with annual spending reaching more than a quarter of a trillion dollars. Cumulative investment in the NZS is 67% higher at $12.7 trillion, equating to an average annual spend of $438 billion between 2022-50. The investment analysis covers low-carbon and fossil fuel supply-side investments, as well as low-carbon demand-side investments in transport, buildings and industry.

India must significantly ramp up energy transition spending

The investment required to power the transition falls into two broad categories: energy supply and demand. Historically, greater emphasis has been placed on the supply side to shift expenditure from fossil fuels to low-carbon sources of energy. However, the dramatic increase in spending flowing toward the rollout and sale of EVs signifies the investment potential on the demand side.

Investment in energy supply and demand in the ETS requires $262 billion to be spent on average each year. Reaching net-zero emissions by mid-century increases the annual average spend to $438 billion per year in the NZS (Figure 58). A substantial shift and acceleration in capital deployment is needed to decarbonize India’s economy, which will establish new sectors, particularly on the demand side, as major investment opportunities.

Figure 58: Investment in India’s energy supply and demand

Source: BloombergNEF. Note: The numbers inside the bars show the annual investment in each decade and the ones above indicate average annual investment.
The contrasting level of ambition and net-zero compliant sector carbon budgets across the two scenarios are not only reflected in the total amount of capital deployed, but also in how the investment is split across sectors. The NZS sees a cumulative spend of $3.4 trillion on low-carbon power and CCS in power generation by mid-century, equivalent to 27% of the scenario’s overall capital expenditure. That is nearly 2.5 times the $1.4 trillion investment in this area in the ETS. The ETS sees no spending on CCS.

Conversely, capital requirements for fossil fuel processes total $1.2 trillion in the ETS, representing 16% of overall investment. This drops to $0.6 trillion and a 5% share in the NZS, demonstrating India’s shift from reliance on these conventional sources of energy.

In both scenarios, the growing uptake of EVs represents significant spending, amounting to $64 billion per year on average in the ETS and $133 billion per year in the NZS, between 2022 and 2050. In cumulative terms, reshaping India’s mobility to run on electric powertrains creates an investment opportunity of $1.9 trillion and $3.9 trillion in the ETS and NZS, respectively, accounting for around 25-30% of total spending between now and 2050.

Figure 59: India’s investment in energy supply and demand from 2022 to 2050

<table>
<thead>
<tr>
<th>Economic Transition Scenario</th>
<th>Net Zero Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fossil fuel processes</td>
<td>Fossil fuel processes</td>
</tr>
<tr>
<td>16%</td>
<td>1%</td>
</tr>
<tr>
<td>Fossil fuel power</td>
<td>Fossil fuel power</td>
</tr>
<tr>
<td>4%</td>
<td>1%</td>
</tr>
<tr>
<td>Low-carbon power</td>
<td>Low-carbon power</td>
</tr>
<tr>
<td>19%</td>
<td>21%</td>
</tr>
<tr>
<td>Grids</td>
<td>Grids</td>
</tr>
<tr>
<td>17%</td>
<td>16%</td>
</tr>
<tr>
<td>EV sales</td>
<td>EV sales</td>
</tr>
<tr>
<td>25%</td>
<td>30%</td>
</tr>
<tr>
<td>Sustainable materials</td>
<td>Sustainable materials</td>
</tr>
<tr>
<td>19%</td>
<td>5%</td>
</tr>
<tr>
<td>Heat pumps</td>
<td>Heat pumps</td>
</tr>
<tr>
<td>5%</td>
<td>12%</td>
</tr>
<tr>
<td>CCS (power)</td>
<td>CCS (power)</td>
</tr>
<tr>
<td>6%</td>
<td>1%</td>
</tr>
<tr>
<td>CCS (non-power)</td>
<td>CCS (non-power)</td>
</tr>
<tr>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>Hydrogen</td>
</tr>
<tr>
<td>3%</td>
<td>6%</td>
</tr>
<tr>
<td>Total investment</td>
<td>Total investment</td>
</tr>
<tr>
<td>$7.6 trillion</td>
<td>$12.7 trillion</td>
</tr>
</tbody>
</table>

Source: BloombergNEF. Note: CCS – Carbon capture and storage. “CCS (power)” includes carbon capture and storage investment for fossil fuel plants and CCS equipment. “CCS (non-power)” includes CCS equipment in blue hydrogen production and industry as well as transport and storage across all sectors. Fossil fuel processes refers upstream, midstream and downstream components of coal, oil and gas processes. Sustainable materials refers to investment in recycling facilities for aluminum, cement, plastics and steel.
About us

Contact details

Client enquiries:
- Bloomberg Terminal: press <Help> key twice
- Email: support.bnef@bloomberg.net

Siddharth Shetty Analyst, India
Allen Tom Abraham Head, Sustainable Materials
Shantanu Jaiswal Head of Research, India
David Hostert Head of Modeling and Energy Economics

Copyright

© Bloomberg Finance L.P. 2023. This publication is the copyright of Bloomberg Finance L.P. in connection with BloombergNEF. No portion of this document may be photocopied, reproduced, scanned into an electronic system or transmitted, forwarded or distributed in any way without prior consent of BloombergNEF.

Disclaimer

The BloombergNEF ("BNEF"), service/information is derived from selected public sources. Bloomberg Finance L.P. and its affiliates, in providing the service/information, believe that the information it uses comes from reliable sources, but do not guarantee the accuracy or completeness of this information, which is subject to change without notice, and nothing in this document shall be construed as such a guarantee. The statements in this service/document reflect the current judgment of the authors of the relevant articles or features, and do not necessarily reflect the opinion of Bloomberg Finance L.P., Bloomberg L.P. or any of their affiliates ("Bloomberg"). Bloomberg disclaims any liability arising from use of this document, its contents and/or this service. Nothing herein shall constitute or be construed as an offering of financial instruments or as investment advice or recommendations by Bloomberg of an investment or other strategy (e.g., whether or not to “buy”, “sell”, or “hold” an investment). The information available through this service is not based on consideration of a subscriber’s individual circumstances and should not be considered as information sufficient upon which to base an investment decision. You should determine on your own whether you agree with the content. This service should not be construed as tax or accounting advice or as a service designed to facilitate any subscriber’s compliance with its tax, accounting or other legal obligations. Employees involved in this service may hold positions in the companies mentioned in the services/information. The data included in these materials are for illustrative purposes only. The BLOOMBERG TERMINAL service and Bloomberg data products (the “Services”) are owned and distributed by Bloomberg Finance L.P. ("BFLP") except (i) in Argentina, Australia and certain jurisdictions in the Pacific islands, Bermuda, China, India, Japan, Korea and New Zealand, where Bloomberg L.P. and its subsidiaries ("BLP") distribute these products, and (ii) in Singapore and the jurisdictions serviced by Bloomberg’s Singapore office, where a subsidiary of BFLP distributes these products. BLP provides BFLP and its subsidiaries with global marketing and operational support and service. Certain features, functions, products and services are available only to sophisticated investors and only where permitted. BFLP, BLP and their affiliates do not guarantee the accuracy of prices or other information in the Services. Nothing in the Services shall constitute or be construed as an offering of financial instruments by BFLP, BLP or their affiliates, or as investment advice or recommendations by BFLP, BLP or their affiliates or an investment strategy or whether or not to “buy”, “sell” or “hold” an investment. Information available via the Services should not be considered as information sufficient upon which to base an investment decision. The following are trademarks and service marks of BFLP, a Delaware limited partnership, or its subsidiaries: BLOOMBERG, BLOOMBERG ANYWHERE, BLOOMBERG MARKETS, BLOOMBERG NEWS, BLOOMBERG PROFESSIONAL, BLOOMBERG TERMINAL and BLOOMBERG.COM. Absence of any trademark or service mark from this list does not waive Bloomberg’s intellectual property rights in that name, mark or logo. All rights reserved. © 2023 Bloomberg.