

Transition Metals Outlook 2025

T M
O 25

Contents

Section 1.	Executive summary	4
Section 2.	Introduction	9
	2.1. What is TMO 2025?	9
	2.2. What's new in TMO 2025	9
Section 3.	State of the industry	12
	3.1. Demand	13
	3.2. Supply	17
	3.3. Prices	21
Section 4.	Demand changes for the Transition Metals Outlook 2025	22
	4.1. Power generation	22
	4.2. Power grids	26
	4.3. Transport	26
	4.4. Hydrogen	29
Section 5.	Commodity spotlight: Steel	30
	5.1. Demand	30
	5.2. Supply	31
	5.3. Prices	32
	5.4. What to watch for	33
Section 6.	Commodity spotlight: Aluminum	34
	6.1. Demand	34
	6.2. Supply	35
	6.3. Prices	36
	6.4. What to watch for	37
Section 7.	Commodity spotlight: Copper	38
	7.1. Demand	38
	7.2. Supply	39
	7.3. Prices	40
	7.4. What to watch for	41
Section 8.	Commodity spotlight: Platinum group metals	43
	8.1. Demand	43
	8.2. Supply	44
	8.3. Prices	46
	8.4. What to watch for	46
Section 9.	Commodity spotlight: Manganese	48
	9.1. Demand	48
	9.2. Supply	49
	9.3. Prices	50

9.4. What to watch for	51
Section 10. Commodity spotlight: Lithium	52
10.1. Demand	52
10.2. Supply	53
10.3. Prices	54
10.4. What to watch for	55
Section 11. Commodity spotlight: Cobalt	57
11.1. Demand	57
11.2. Supply	58
11.3. Prices	59
11.4. What to watch for	60
Section 12. Commodity spotlight: Nickel	62
12.1. Demand	62
12.2. Supply	63
12.3. Prices	64
12.4. What to watch for	65
Section 13. Commodity spotlight: Graphite	66
13.1. Demand	66
13.2. Supply	67
13.3. Prices	68
13.4. What to watch for	69
Section 14. Diversifying global supply chains	70
14.1. Introduction	70
14.2. How are the selected countries providing incentives?	71
14.3. Which metals are being funded?	73
14.4. China's growing critical minerals influence	74
14.5. Unpacking the best practices	76
14.6. Strategies for diversifying global supply chains	78
14.7. Bloomberg Economics analysis	79
Section 15. Corporate investment strategies	81
15.1. Introduction	81
15.2. Company overview	81
15.3. Business overview	82
15.4. Market overview	84
15.5. Financial performance	85
15.6. Capital expenditure and investment	89
15.7. Bloomberg Intelligence analysis	94
Section 16. Carbon payback periods of clean power technologies	97
16.1. Raw materials for solar and wind are carbon intensive	97
16.2. Carbon payback and why metals matter	98
16.3. Metals production still needs to be decarbonized	102

Appendix A.	Diversifying supply chains	105
Appendix B.	Calculating carbon payback periods	107
About us		110

Section 1. Executive summary

7 out of 10

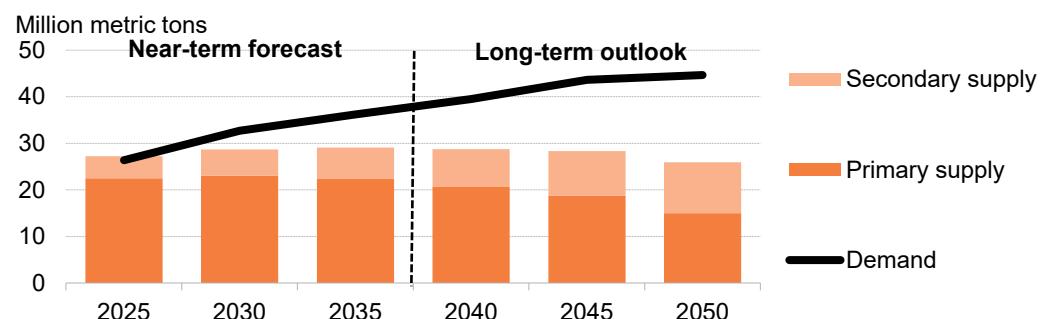
Energy transition minerals expected to be in supply surplus between today and 2030

4 million metric tons

Copper deficit in 2030 under BNEF's ETS

597 million metric tons

The amount of new demand for metals and minerals this decade because of the energy transition


BloombergNEF's *Transition Metals Outlook 2025* assesses how shifting priorities in the energy sector will impact key metals markets over the next 25 years. It highlights sharply diverging demand trajectories, widening supply imbalances, rising geopolitical and policy risks, and the strategic repositioning of governments and global mining companies. For some key metals, energy transition momentum is pushing a rapid expansion in demand, leaving supply chains, investment levels and environmental policies struggling to keep up.

Demand for copper, aluminum, lithium, graphite and manganese is rising as electrification and clean-power buildout intensify. Copper faces the most acute long-term pressure, as a boom in copper-intensive data centers coincides with mine disruptions and slow permitting, which are holding back supply. Batteries remain the biggest driver of growth for lithium, cobalt and nickel demand, though chemistry shifts are changing their intensities. Supply remains uneven: lithium and cobalt are in near-term surplus, while graphite and copper are tightening. Steel and platinum group metals (PGMs) remain tied to legacy sectors, with limited upside from the energy transition.

For copper, all scenarios lead to a deficit

Copper sees a steep long-term increase in use. Energy transition demand triples by 2045, driven by electric vehicles, grid expansion and data centers. The commodity enters a structural deficit from 2026 onward. Mine disruptions in Chile, Indonesia and Peru amplify this tightness. A massive deficit – amounting to some 19 million metric tons by 2050 – looms if new mines and recycling facilities are not built over the next decade.

Figure 1: Global copper market balance

Source: BloombergNEF. Note: Supply is based on BNEF's announced asset-level supply analysis and benchmarking, and represents risk-adjusted capacity. Secondary supply includes collected scrap and battery recycling material availability. Demand is under BNEF's Economic Transition Scenario.

For aluminum, China leads production, but India is catching up

China is far and away the world leader in global aluminum supply, accounting for half of the metal produced today. As a result, supply risks in the sector are also concentrated in China. A government-imposed production cap on the metal – originally introduced to curb overcapacity and reduce carbon emissions – is close to being reached, and it now limits the industry's ability to respond to rising domestic and global demand. Raising the ceiling would ease supply pressures but could also resurface environmental concerns.

As production expands elsewhere, China's share of the global market falls to 37% by 2050 in BNEF's Economic Transition Scenario. At the same time, India is ramping up production capacity, and its total output more than doubles in the next 10 years under the ETS.

For graphite, a supply shortfall emerges after 2030

Demand for graphite is set to rise to 6.7 million tons in 2050 in the ETS, from 2.7 million tons in 2025. Graphite is the primary material for anodes – a key component of lithium-ion batteries – and much of its demand growth is driven by the expanding use of lithium-ion batteries across the electric vehicle and energy storage sectors. BNEF expects the graphite market to enter a technical deficit in 2032, as growth in secondary graphite production (graphite recovered from retired lithium-ion batteries) fails to keep pace with a slowdown in capacity additions in primary supply.

For lithium, supply keeps growing

Total lithium capacity from both primary and secondary sources could reach 4.4 million tons of lithium carbonate equivalent (LCE) by 2035, up from 1.5 million metric tons LCE in 2025. The lithium industry has matured over the last five years, following an extended period of depressed prices.

Capacity additions are expected to increase significantly due to three factors: maturity of some direct lithium-extraction projects, new sources of supply from South America and Africa, and retired batteries entering the secondary market. Mined capacity additions are set to grow threefold over the next decade, while secondary supply will grow faster after 2035, when retired batteries become more available for recycling. Lithium prices remain low after falling from a peak of \$80,000 per ton in November 2022, although supply disruption, subsidy reduction and stationary storage growth have recently helped prices recover somewhat.

For manganese, upstream supply is stable, but downstream supply is concentrated

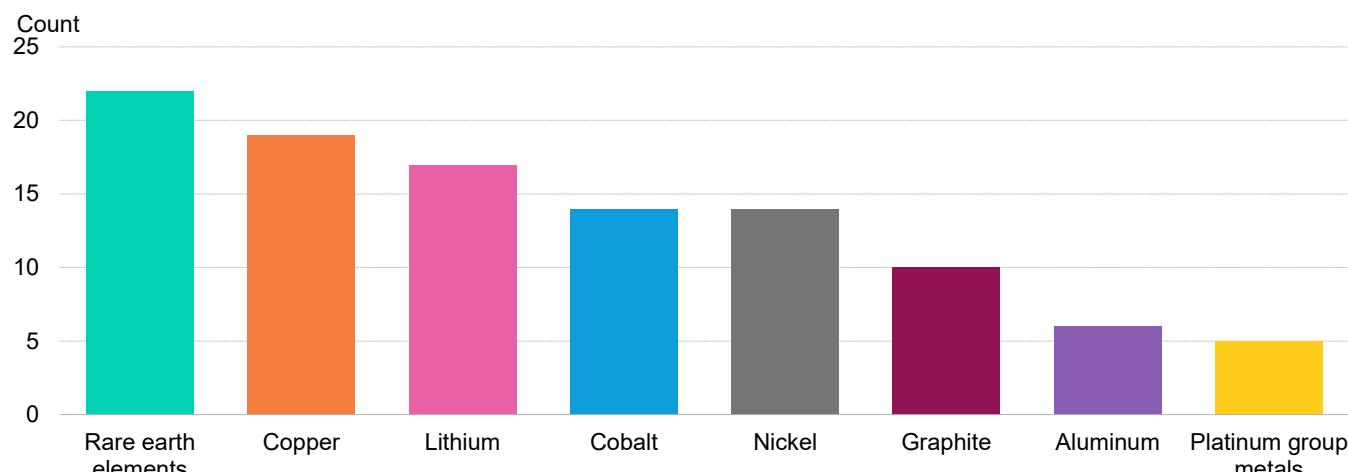
Global manganese use is – and will continue to be – dominated by steelmaking, which today accounts for 97% of the metal's use. BNEF expects the manganese market to align supply with demand through 2050. Unlike other energy-transition commodities, manganese ore faces no supply-related risks concerning reserves or production capacity, although regional policy and logistics constraints may influence short-term availability. Total supply is set to grow by roughly 1% a year between 2025 and 2050, as primary supply utilization rates can adjust to meet demand where logistics, energy and regulatory conditions permit.

China's steel production controls and dominance in battery-grade manganese sulfate production are likely to be the main factors impacting demand and trade flows. Logistical challenges in South Africa and a planned 2029 export ban in Gabon pose near-term supply risks, as both factors could curtail seaborne supply.

For cobalt, DRC export ban boosts price

Cobalt prices have been trending downward, largely due to a persistent supply surplus in the industry. In February, when prices had dropped 73% from their peak in April 2022, the Democratic Republic of Congo announced a four-month export ban aimed at stabilizing prices. The ban was later extended to September, when the DRC introduced an export quota policy for cobalt with a 96,600-ton annual cap for 2026 and 2027 – a 50% reduction from 2024 highs. Following these interventions, prices for cobalt metal and related products rebounded sharply, rising 128% from February to October, and the export cap is likely to continue supporting prices into the new year.

Countries are investing in supply chains, but China still dominates

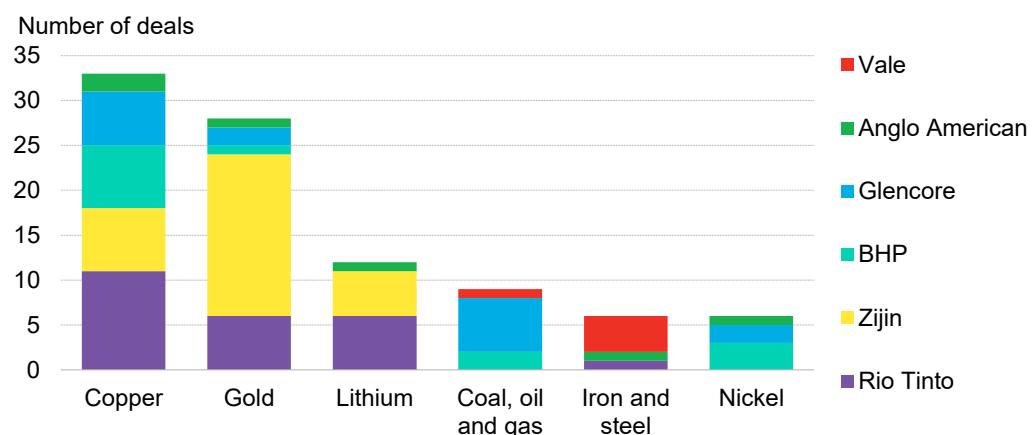

China dominates midstream capacity in aluminum, graphite, manganese, cobalt, nickel and rare earths – but relies heavily on imported ore for copper, PGMs and cobalt. Europe and the US have secured domestic supply for aluminum, steel, and to an extent copper, but remain deeply exposed across graphite, manganese, nickel and lithium. Japan and South Korea depend on diversified imports and recycling rather than meaningful primary supply. Southeast Asia sees Indonesia and the Philippines anchoring upstream production, especially nickel.

Across the rest of the world, upstream resources are abundant, but refining capacity remains highly concentrated, forcing ore flows back to China, Europe and the US for processing. Governments are responding with accelerated permitting, strategic stockpiling, recycling incentives and midstream buildout, but progress is uneven.

Rare earths get the most policy attention

Among the five countries assessed in detail in this report, rare earth minerals have attracted the most policy support through fiscal and financial incentives, followed by copper. The mining and refining of rare earth elements (REEs) is heavily concentrated in China, which has drawn significant attention from both the public and private sectors around the world. This intense focus is warranted, given REEs' crucial role in advanced technologies and the energy transition. Copper has similarly become a strategic priority for governments, due to surging demand and lagging upstream investment.

Figure 2: Count of policy incentives for critical metals in Australia, Brazil, Canada, Indonesia and South Africa, 2015-2025

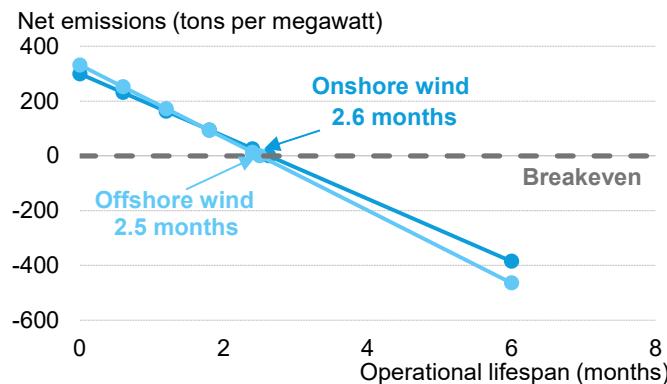
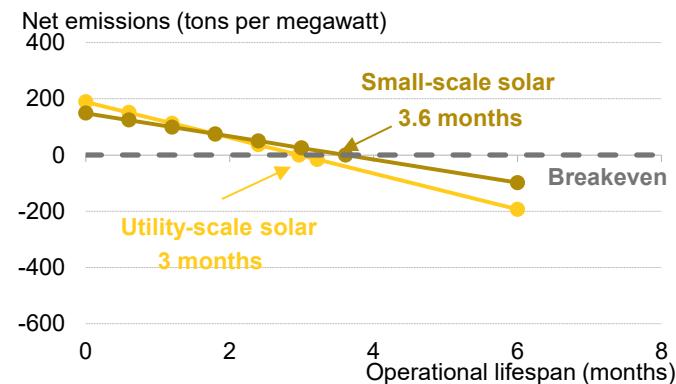


Source: BloombergNEF

Copper leads in corporate expansion

Increasing demand from both the energy transition and traditional sectors is prompting renewed investment activity in the metals industry. In the broadest terms, companies are developing new mines to meet growing demand for key metals and materials. This report assesses the capital investment activity of Anglo American, BHP, Glencore, Rio Tinto, Vale and Zijin amid shifting market conditions.

Figure 3: Acquisitions by commodity, 2020-25



Source: Bloomberg Terminal, company websites and news, BloombergNEF. Note: The period for the above deals is from Jan. 1, 2020, to Oct. 28, 2025. The deal count is based on the number of metal types involved rather than the absolute number of transactions. For assets producing multiple metals – for example, copper and gold – one transaction is counted once in each relevant metal category. In such cases, a single deal would be recorded as two metal entries in total. The dataset includes acquisitions of both companies engaged in producing or refining specific commodities and mining assets containing those commodities.

Decarbonization of metals is the next frontier

Renewable energy technologies play a central role in driving the global energy transition. Wind and solar capacity grow fivefold in the next 25 years in BNEF's Economic Transition Scenario, reaching almost 20 terawatts by 2050. These assets offset grid emissions once they are operational, but they carry an upfront carbon cost from the materials used in manufacturing of equipment and the construction of project infrastructure.

Steel, aluminum and copper are the main contributors to embodied emissions in solar and wind projects. Their production is tied to energy-intensive mining, smelting and refining processes. As grids decarbonize, avoided emissions gradually offset this embodied footprint.

Onshore and offshore wind reaches the breakeven point fastest, in under three months. This is thanks to high capacity factors and moderate material intensities. Utility-scale solar can pay back its metals emissions by operating for three months, while small-scale utility solar takes around 3.6 months. To decrease this carbon payback period, companies investing in the energy transition must prioritize both downstream investment (such as solar and wind) and upstream investment (such as mines and refineries). Ignoring upstream decarbonization leads to higher embedded emissions throughout the supply chain, prolonging the carbon payback of renewable energy technologies.

Figure 4: Carbon payback of wind projects, by technology**Figure 5: Carbon payback of solar projects, by technology**

Source: BloombergNEF. Note: Operational lifespan reflects the technology's total lifetime. The chart shows only the early phase of a project's life, when payback occurs. Net emissions reflect the difference between a project's embodied emissions and the avoided emissions from replacing grid electricity generated from fossil fuels. The breakeven point, or carbon payback point, occurs when cumulative avoided emissions equal embodied emissions. Calculated using a global average grid emission intensity of 0.42 metric tons CO₂ equivalent per megawatt-hour (tCO₂e/MWh).

About us

Contact details

Client enquiries:

- Bloomberg Terminal: press Help key twice
- Email: support.bnef@bloomberg.net

Ellie Gomes-Callus	Senior Associate, Metals and Mining
Rosemary Katz	Senior Associate, Metals and Mining
Johnson Jiang	Analyst, Metals and Mining
Sung Choi	Specialist, Metals and Mining
Peng Xu	Senior Associate, Metals and Mining
Allan Ray Restauro	Associate, Metals and Mining
Carissa O'Donnell	Intern, Metals and Mining
Kwasi Ampofo	Head of Metals and Mining
Chris Kennedy	Economic Statecraft Lead, Bloomberg Economics
Alon Olsha	Senior Analyst, Metals and Mining, Bloomberg Intelligence
David Doherty	Head of Natural Resources
Kamala Schelling	Editor
Mark Williams	Editor

Copyright

© Bloomberg Finance L.P. 2025. This publication is the copyright of Bloomberg New Energy Finance. No portion of this document may be photocopied, reproduced, scanned into an electronic system or transmitted, forwarded or distributed in any way without prior consent of Bloomberg New Energy Finance.

Disclaimer

The Bloomberg NEF ("BNEF"), service/information is derived from selected public sources. Bloomberg Finance L.P. and its affiliates, in providing the service/information, believe that the information it uses comes from reliable sources, but do not guarantee the accuracy or completeness of this information, which is subject to change without notice, and nothing in this document shall be construed as such a guarantee. The statements in this service/document reflect the current judgment of the authors of the relevant articles or features, and do not necessarily reflect the opinion of Bloomberg Finance L.P., Bloomberg L.P. or any of their affiliates ("Bloomberg"). Bloomberg disclaims any liability arising from use of this document, its contents

No portion of this document may be reproduced, scanned into an electronic system, distributed, publicly displayed or used as the basis of derivative works without the prior written consent of Bloomberg Finance L.P. For more information on terms of use, please contact sales.bnfp@bloomberg.net. Copyright and Disclaimer notice on page 112 applies throughout.

and/or this service. Nothing herein shall constitute or be construed as an offering of financial instruments or as investment advice or recommendations by Bloomberg of an investment or other strategy (e.g., whether or not to "buy", "sell", or "hold" an investment). The information available through this service is not based on consideration of a subscriber's individual circumstances and should not be considered as information sufficient upon which to base an investment decision. You should determine on your own whether you agree with the content. This service should not be construed as tax or accounting advice or as a service designed to facilitate any subscriber's compliance with its tax, accounting or other legal obligations. Employees involved in this service may hold positions in the companies mentioned in the services/information.

The data included in these materials are for illustrative purposes only. The BLOOMBERG TERMINAL service and Bloomberg data products (the "Services") are owned and distributed by Bloomberg Finance L.P. ("BFLP") except that Bloomberg L.P. and its subsidiaries ("BLP") distribute these products in Argentina, Australia and certain jurisdictions in the Pacific islands, Bermuda, China, India, Japan, Korea and New Zealand. BLP provides BFLP with global marketing and operational support. Certain features, functions, products and services are available only to sophisticated investors and only where permitted. BFLP, BLP and their affiliates do not guarantee the accuracy of prices or other information in the Services. Nothing in the Services shall constitute or be construed as an offering of financial instruments by BFLP, BLP or their affiliates, or as investment advice or recommendations by BFLP, BLP or their affiliates of an investment strategy or whether or not to "buy", "sell" or "hold" an investment. Information available via the Services should not be considered as information sufficient upon which to base an investment decision. The following are trademarks and service marks of BFLP, a Delaware limited partnership, or its subsidiaries: BLOOMBERG, BLOOMBERG ANYWHERE, BLOOMBERG MARKETS, BLOOMBERG NEWS, BLOOMBERG PROFESSIONAL, BLOOMBERG TERMINAL and BLOOMBERG.COM. Absence of any trademark or service mark from this list does not waive Bloomberg's intellectual property rights in that name, mark or logo. All rights reserved. © 2025 Bloomberg.